import streamlit as st from PIL import Image from transformers import VisionEncoderDecoderModel, ViTImageProcessor, GPT2TokenizerFast import torch from PIL import Image model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer=GPT2TokenizerFast.from_pretrained("nlpconnect/vit-gpt2-image-captioning") gen_kwargs1 ={"max_length": 4,"num_beams": 2} gen_kwargs2 ={"max_length": 32,"num_beams": 16} def predict_step(images): pixel_values = feature_extractor(images=images, return_tensors='pt').pixel_values output_ids1 = model.generate(pixel_values) output_ids2 = model.generate(pixel_values,**gen_kwargs1) output_ids3 = model.generate(pixel_values,**gen_kwargs2) preds1 = tokenizer.batch_decode(output_ids1, skip_special_tokens=True) preds2 = tokenizer.batch_decode(output_ids2, skip_special_tokens=True) preds3 = tokenizer.batch_decode(output_ids3, skip_special_tokens=True) preds1 =[pred.strip() for pred in preds1] preds2 =[pred.strip() for pred in preds2] preds3 =[pred.strip() for pred in preds3] return preds1[0],preds2[0],preds3[0] st.title("Image Caption Generator") upload_image = st.file_uploader(label='Upload image', type=['png', 'jpg','jpeg'], accept_multiple_files=False) if upload_image is not None: image = Image.open(upload_image) if image.mode != "RGB": image = image.convert(mode="RGB") output = predict_step([image]) st.header("Captions are : ") st.text(output[0]) st.text(output[1]) st.text(output[2])