import streamlit as st import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import plotly.express as px from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB from sklearn.metrics import classification_report, accuracy_score, confusion_matrix import os # Create 'charts' folder if it doesn't exist if not os.path.exists('charts'): os.makedirs('charts') # Function to save and show charts def save_and_show_chart(fig, filename): filepath = os.path.join('charts', filename) fig.savefig(filepath) st.image(filepath) st.set_page_config( page_title="Breast Cancer Analysis", page_icon=":female-doctor:", layout="wide", initial_sidebar_state="expanded" ) # Set page title st.title('Breast Cancer Diagnosis - Machine Learning Model Evaluation') st.divider() # Breast Cancer Wisconsin Dataset Information st.header("Breast Cancer Wisconsin (Diagnostic) Data Set") st.write(""" The **Breast Cancer Wisconsin (Diagnostic) Data Set** is a collection of clinical breast cancer diagnostic data. The data includes features that describe characteristics of cell nuclei from breast cancer biopsies, which are used to predict whether a tumor is benign or malignant. Key features in the dataset include: - **Radius:** The average distance from the center to points on the perimeter - **Texture:** The standard deviation of grayscale values - **Perimeter, Area, Smoothness:** Other morphological features describing cell shapes The dataset is commonly used for classification tasks in machine learning to predict the likelihood of breast cancer malignancy. """) # Footer or additional information st.write("This application aims to provide insights into breast cancer through data analysis and prediction based on the Breast Cancer Wisconsin dataset.") st.divider() # Data Preparation and Import Libraries st.header('Data Preparation') data = pd.read_csv('./data/data.csv') st.subheader('Data Preview (show only first 5 rows)') st.write(data.head()) st.subheader('Data Shape') st.success(f"There are {data.shape[0]} rows and {data.shape[1]} columns in this dataset.") # st.subheader('Data Info') # st.table(data.info()) st.divider() st.subheader('Checking Duplicates and Missing Values') st.success(f"There are {data.duplicated().sum()} duplicate rows in this dataset.") st.write(data.isna().sum()) st.divider() st.subheader('Dropping Irrelevant Columns') data = data.drop(['id', 'Unnamed: 32'], axis=1) st.success("**id** and **Unnamed** columned were deleted because these variables can not be used for classification.") st.divider() st.subheader('Renaming Columns') st.write("In the dataset, the 'diagnosis' variable was renamed as 'target,' where the value 'M' (Malignant) was renamed to 1 and 'B' (Benign) was renamed to 0 for easier modeling.") data = data.rename(columns={'diagnosis': 'target'}) df = data.copy() data.target.replace({'M': '1', 'B': '0'}, inplace=True) data.target = data.target.astype('float64') st.write(data.head()) st.divider() # Analysis & EDA st.header('Analysis & EDA') st.subheader('Target Value Counts') y = df.target ax = sns.countplot(y,label="Count") # M = 212, B = 357 B, M = y.value_counts() st.write('Number of Benign (0): ',B) st.write('Number of Malignant (1): ',M) # Visualizing target data st.subheader('Bar Plot of Target Values') fig, ax = plt.subplots(figsize=(8, 6)) # data['target'].value_counts().plot(kind='bar', edgecolor='black', color=['lightsteelblue', 'navajowhite'], ax=ax) sns.countplot(y, label="Count", ax=ax) ax.set_title("Target Distribution") # st.pyplot(fig) save_and_show_chart(fig, 'target_count.png') st.divider() # Correlation Analysis st.subheader('Correlation Analysis') cor = data.corr() st.write(cor) st.divider() st.subheader('Correlation Heatmap') fig, ax = plt.subplots(figsize=(25, 23)) sns.heatmap(cor, annot=True, linewidths=0.3, linecolor="black", fmt=".2f", ax=ax) ax.set_title('Correlation Heatmap') # st.pyplot(fig) save_and_show_chart(fig, 'correlation_heatmap.png') st.divider() st.subheader('Features with Correlation > 0.75') threshold = 0.75 filtre = np.abs(cor["target"]) > threshold corr_features = cor.columns[filtre].tolist() cluster_map = sns.clustermap( data[corr_features].corr(), annot=True, fmt=".2f", figsize=(10, 8) # Adjust the figsize here ) plt.savefig('charts/clustermap_high_correlation.png') st.image('charts/clustermap_high_correlation.png') # st.pyplot(cluster_map.fig) st.divider() # Pairplot for high-correlation features st.subheader('Pairplot for Features with High Correlation') fig, ax = plt.subplots(figsize=(8, 6)) pairplot = sns.pairplot(data[corr_features], diag_kind="kde", markers="*", hue="target") plt.savefig('charts/pairplot_high_correlation.png') st.image('charts/pairplot_high_correlation.png') # st.pyplot(pairplot) st.divider() # Machine Learning Model Evaluation st.header('Machine Learning Model Evaluation') # Splitting the data x = data.drop('target', axis=1) y = data['target'] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.30, random_state=101) scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) algorithm = ['KNeighborsClassifier', 'RandomForestClassifier', 'DecisionTreeClassifier', 'GaussianNB', 'LogisticRegression'] Accuracy = [] def evaluate_model(model): model.fit(x_train, y_train) pred = model.predict(x_test) acc = accuracy_score(y_test, pred) Accuracy.append(acc) # Confusion Matrix cm = confusion_matrix(y_test, pred) st.subheader(f'Confusion Matrix for {model.__class__.__name__}') fig, ax = plt.subplots() sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', ax=ax) save_and_show_chart(fig, f'{model}_confusion_matrix.png') # st.pyplot(fig) # Normalized Confusion Matrix cm_norm = confusion_matrix(y_test, pred, normalize='true') st.subheader(f'Normalized Confusion Matrix for {model.__class__.__name__}') fig, ax = plt.subplots() sns.heatmap(cm_norm, annot=True, cmap='Blues', ax=ax) save_and_show_chart(fig, f'{model}_normalized_confusion_matrix.png') # st.pyplot(fig) # Classification Report st.subheader(f'Classification Report for {model.__class__.__name__}') st.text(classification_report(y_test, pred)) st.write(f"Accuracy: {acc}") # Evaluating different models st.subheader('01. KNeighborsClassifier Evaluation') model_knn = KNeighborsClassifier(n_neighbors=2) evaluate_model(model_knn) st.divider() st.subheader('02. RandomForestClassifier Evaluation') model_rf = RandomForestClassifier(n_estimators=100, random_state=0) evaluate_model(model_rf) st.divider() st.subheader('03. DecisionTreeClassifier Evaluation') model_dt = DecisionTreeClassifier(random_state=42) evaluate_model(model_dt) st.divider() st.subheader('04. GaussianNB Evaluation') model_nb = GaussianNB() evaluate_model(model_nb) st.divider() st.subheader('05. LogisticRegression Evaluation') model_lr = LogisticRegression() evaluate_model(model_lr) st.divider() # Final Accuracy Plot st.header('Model Accuracy Comparison') df = pd.DataFrame({'Algorithm': algorithm, 'Accuracy': Accuracy}) fig, ax = plt.subplots(figsize=(20, 10)) ax.plot(df.Algorithm, df.Accuracy, label='Accuracy', lw=5, color='peru', marker='o', markersize=15) ax.legend(fontsize=15) ax.set_xlabel('\nModel', fontsize=20) ax.set_ylabel('Accuracy\n', fontsize=20) save_and_show_chart(fig, 'model_Accuracy.png') # st.pyplot(fig) # End of Streamlit app