import cv2 import numpy as np import tensorflow as tf from sklearn.linear_model import LinearRegression from src.get_patch_rgb import get_patch_rgb class Cyanotype(): def __init__(self): ### set for patch ### patch_img_path = './colorpatches/cyanotype_full.png' self.update_patch(cv2.imread(patch_img_path, cv2.IMREAD_COLOR)) def update_patch(self, patch_img): self.rgb_cyano = [[0,0,0]] self.patch_img = patch_img self.patch_img_height, self.patch_img_width, _ = self.patch_img.shape self.crop_img() self.patch_rgb = get_patch_rgb() self.patch_rgb = np.array(self.patch_rgb) # self.patch_rgb = self.patch_rgb/255.0 self.rgb_cyano = np.array(self.rgb_cyano) # self.rgb_cyano = self.rgb_cyano/255.0 print(self.patch_rgb.shape) print(self.rgb_cyano.shape) self.fit_model() def crop_img(self): # 対象範囲を切り出し h_pix = 14 w_pix = 21 w_ = round(self.patch_img_width/w_pix) h_ = round(self.patch_img_height/h_pix) for i in range(h_pix): for j in range(w_pix): boxFromX = j*w_+5 #対象範囲開始位置 X座標 boxFromY = i*h_+5 #対象範囲開始位置 Y座標 boxToX = ((j+1)*w_)-7 #対象範囲終了位置 X座標 boxToY = ((i+1)*h_)-7 #対象範囲終了位置 Y座標 # y:y+h, x:x+w の順で設定 imgBox = self.patch_img[boxFromY: boxToY, boxFromX: boxToX] # RGB平均値を出力 # flattenで一次元化しmeanで平均を取得 b = imgBox.T[0].flatten().mean() g = imgBox.T[1].flatten().mean() r = imgBox.T[2].flatten().mean() self.rgb_cyano.append([r,g,b]) del self.rgb_cyano[0] def fit_model(self): self.reg = LinearRegression().fit(self.patch_rgb, self.rgb_cyano) self.reg.score(self.patch_rgb, self.rgb_cyano) print('self.reg.coef_: ', self.reg.coef_) print('self.reg.intercept_: ', self.reg.intercept_) def predict_img(self, img): print(img.shape) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # img = cv2.resize(img, dsize=None, fx=0.2, fy=0.2) # img = cv2.resize(img, dsize=(100, 100)) # img = cv2.resize(img, dsize=(500, 500)) img_cyano = img @ self.reg.coef_.T + self.reg.intercept_ img_cyano = img_cyano.astype(np.uint8) img_cyano = cv2.cvtColor(img_cyano, cv2.COLOR_RGB2BGR) img_cyano = np.array(img_cyano) print(img_cyano.shape) return img_cyano def MSE(self, imageA, imageB): err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2) err /= float(imageA.shape[0] * imageA.shape[1] * imageA.shape[2]) return err # ---------- Optimization with Tensorflow ---------- # def tf_optimize(self, img): print('\n---------- Start Optimization ----------') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) x = self.reg.coef_ A = img target = img A_height = A.shape[0] A_width = A.shape[1] cnt = A_height*A_width print(A.shape) print(cnt) param_tf = tf.Variable(A, dtype=tf.float64) coef_tf = tf.constant(x.T, dtype=tf.float64) intercept_tf = tf.constant(self.reg.intercept_, dtype=tf.float64) target_tf = tf.constant(target, dtype=tf.float64) opt = tf.keras.optimizers.Adam(learning_rate=5.0) # opt = tf.keras.optimizers.Adam(learning_rate=0.1) def loss(): x0 = param_tf x0 = tf.where(x0 > 255.0, 255.0, x0) x0 = tf.where(x0 < 0.0, 0.0, x0) x0 = tf.reshape(x0, [cnt, 3]) t_tf = target_tf t_tf = tf.reshape(t_tf, [cnt, 3]) pred = tf.linalg.matmul(x0, coef_tf) + intercept_tf diff = pred - t_tf diff_2 = diff**2 pix_cnt = tf.size(t_tf) pix_cnt = tf.cast(pix_cnt, dtype=tf.float64) loss_val = tf.math.reduce_sum(diff_2) / pix_cnt print('loss_val: ', loss_val) return loss_val for i in range(50): step_count = opt.minimize(loss, [param_tf]).numpy() # if step_count==10: # break print(step_count) # ----- check optimized result ----- # x0 = param_tf x0 = tf.where(x0 > 255.0, 255.0, x0) x0 = tf.where(x0 < 0.0, 0.0, x0) x0 = x0.numpy() x0 = x0.reshape((cnt, 3)) sim_opt = x0 @ x.T + self.reg.intercept_ sim_opt = sim_opt.reshape((A_height, A_width, 3)) sim_opt = sim_opt.astype(np.uint8) sim_opt = cv2.cvtColor(sim_opt, cv2.COLOR_RGB2BGR) return (x0, sim_opt) if __name__ == '__main__': img = cv2.imread('samples/input/00.jpg', cv2.IMREAD_COLOR) cy = Cyanotype() cy.fit_model() cy.predict_img(img) cy.tf_optimize(img)