Spaces:
Running
Running
File size: 23,780 Bytes
4d2155b d74e228 4d2155b fea7d56 ffb4e02 deaaabb ffb4e02 d74e228 b67ceda ffb4e02 b67ceda d74e228 203bd74 09dbb5c b67ceda 09dbb5c b67ceda 09dbb5c ffb4e02 d74e228 ffb4e02 d74e228 4d2155b d74e228 09dbb5c ffb4e02 09dbb5c ffb4e02 09dbb5c ffb4e02 d74e228 bcdc929 ffb4e02 bcdc929 09dbb5c bcdc929 09dbb5c bcdc929 ffb4e02 bcdc929 ffb4e02 203bd74 09dbb5c ffb4e02 4d2155b ffb4e02 b67ceda ffb4e02 09dbb5c ffb4e02 09dbb5c 4d2155b 203bd74 d74e228 203bd74 d74e228 203bd74 d74e228 203bd74 d74e228 203bd74 d74e228 203bd74 4d2155b 09dbb5c d74e228 09dbb5c 203bd74 09dbb5c 203bd74 09dbb5c d74e228 deaaabb d74e228 deaaabb 4d2155b deaaabb ffb4e02 09dbb5c d74e228 ffb4e02 203bd74 4d2155b ffb4e02 4d2155b ffb4e02 09dbb5c bcdc929 09dbb5c 203bd74 4d2155b bcdc929 09dbb5c d74e228 ffb4e02 d74e228 ffb4e02 09dbb5c ffb4e02 d74e228 09dbb5c d74e228 09dbb5c d74e228 deaaabb d74e228 09dbb5c d74e228 09dbb5c ffb4e02 09dbb5c 203bd74 bcdc929 d74e228 09dbb5c 203bd74 d74e228 203bd74 d74e228 203bd74 4d2155b 203bd74 d74e228 203bd74 d74e228 4d2155b ffb4e02 4d2155b ffb4e02 deaaabb d74e228 deaaabb d74e228 deaaabb d74e228 deaaabb d74e228 deaaabb ffb4e02 fea7d56 ffb4e02 09dbb5c ffb4e02 203bd74 4d2155b ffb4e02 203bd74 ffb4e02 4d2155b 09dbb5c 203bd74 ffb4e02 4d2155b 203bd74 4d2155b 203bd74 ffb4e02 d74e228 4d2155b d74e228 deaaabb ffb4e02 deaaabb fea7d56 09dbb5c deaaabb 09dbb5c deaaabb 09dbb5c deaaabb 09dbb5c fea7d56 deaaabb fea7d56 deaaabb fea7d56 203bd74 ffb4e02 deaaabb 4d2155b deaaabb 203bd74 deaaabb 4d2155b 203bd74 ffb4e02 09dbb5c 4d2155b 203bd74 09dbb5c ffb4e02 d74e228 fea7d56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
# app.py — Voice Clarity Booster with Presets, CPU/GPU-smart Dual-Stage,
# A/B alternating, Loudness Match, and a *polished Delta* (noise-only) option.
#
# New:
# - Delta Mode: Raw Difference | Spectral Residual (noise-only)
# - Delta Alignment (cross-correlation) to reduce phase/latency smear
# - Delta Gain (dB) + HPF/LPF + RMS leveling for listenable delta
import os
import tempfile
from typing import Tuple, Optional, Dict, Any
# ---- Quiet noisy deprecation warnings (optional) ----
import warnings
warnings.filterwarnings(
"ignore",
message=".*torchaudio._backend.list_audio_backends has been deprecated.*",
)
warnings.filterwarnings(
"ignore",
module=r"speechbrain\..*",
category=UserWarning,
)
import gradio as gr
import numpy as np
import soundfile as sf
import torch
import torchaudio
# Optional LUFS matching (falls back to RMS if unavailable)
try:
import pyloudnorm as pyln
_HAVE_PYLN = True
except Exception:
_HAVE_PYLN = False
# Prefer new SpeechBrain API; fall back for older versions
try:
from speechbrain.inference import SpectralMaskEnhancement
except Exception: # < 1.0
from speechbrain.pretrained import SpectralMaskEnhancement # type: ignore
try:
from speechbrain.inference import SepformerSeparation
except Exception:
from speechbrain.pretrained import SepformerSeparation # type: ignore
# -----------------------------
# Environment / runtime limits
# -----------------------------
USE_GPU = torch.cuda.is_available()
# On CPU, SepFormer is extremely slow; avoid for long clips (or disable).
MAX_SEPFORMER_SEC_CPU = float(os.getenv("MAX_SEPFORMER_SEC_CPU", 12))
MAX_SEPFORMER_SEC_GPU = float(os.getenv("MAX_SEPFORMER_SEC_GPU", 180))
ALLOW_SEPFORMER_CPU = os.getenv("ALLOW_SEPFORMER_CPU", "0") == "1"
_DEVICE = "cuda" if USE_GPU else "cpu"
_ENHANCER_METRICGAN: Optional[SpectralMaskEnhancement] = None
_ENHANCER_SEPFORMER: Optional[SepformerSeparation] = None
def _get_metricgan() -> SpectralMaskEnhancement:
global _ENHANCER_METRICGAN
if _ENHANCER_METRICGAN is None:
_ENHANCER_METRICGAN = SpectralMaskEnhancement.from_hparams(
source="speechbrain/metricgan-plus-voicebank",
savedir="pretrained/metricgan_plus_voicebank",
run_opts={"device": _DEVICE},
)
return _ENHANCER_METRICGAN
def _get_sepformer() -> SepformerSeparation:
global _ENHANCER_SEPFORMER
if _ENHANCER_SEPFORMER is None:
_ENHANCER_SEPFORMER = SepformerSeparation.from_hparams(
source="speechbrain/sepformer-whamr-enhancement",
savedir="pretrained/sepformer_whamr_enh",
run_opts={"device": _DEVICE},
)
return _ENHANCER_SEPFORMER
# -----------------------------
# Audio helpers
# -----------------------------
def _to_mono(wav: np.ndarray) -> np.ndarray:
"""Robust mono: accepts [T], [T,C], [C,T]; treats dim<=8 as channels."""
wav = np.asarray(wav, dtype=np.float32)
if wav.ndim == 1:
return wav
if wav.ndim == 2:
t, u = wav.shape
if 1 in (t, u):
return wav.reshape(-1).astype(np.float32)
if u <= 8: # [T, C]
return wav.mean(axis=1).astype(np.float32)
if t <= 8: # [C, T]
return wav.mean(axis=0).astype(np.float32)
return wav.mean(axis=1).astype(np.float32)
return wav.reshape(-1).astype(np.float32)
def _sanitize(x: np.ndarray) -> np.ndarray:
return np.nan_to_num(x, nan=0.0, posinf=0.0, neginf=0.0).astype(np.float32)
def _resample_torch(wav: torch.Tensor, sr_in: int, sr_out: int) -> torch.Tensor:
if sr_in == sr_out:
return wav
return torchaudio.functional.resample(wav, sr_in, sr_out)
def _highpass(wav: torch.Tensor, sr: int, cutoff_hz: float) -> torch.Tensor:
if cutoff_hz is None or cutoff_hz <= 0:
return wav
return torchaudio.functional.highpass_biquad(wav, sr, cutoff_hz)
def _lowpass(wav: torch.Tensor, sr: int, cutoff_hz: float) -> torch.Tensor:
if cutoff_hz is None or cutoff_hz <= 0:
return wav
return torchaudio.functional.lowpass_biquad(wav, sr, cutoff_hz)
def _presence_boost(wav: torch.Tensor, sr: int, gain_db: float) -> torch.Tensor:
if abs(gain_db) < 1e-6:
return wav
center = 4500.0
q = 0.707
return torchaudio.functional.equalizer_biquad(wav, sr, center, q, gain_db)
def _limit_peak(wav: torch.Tensor, target_dbfs: float = -1.0) -> torch.Tensor:
target_amp = 10.0 ** (target_dbfs / 20.0)
peak = torch.max(torch.abs(wav)).item()
if peak > 0:
wav = wav * min(1.0, target_amp / peak)
return torch.clamp(wav, -1.0, 1.0)
def _align_lengths(a: np.ndarray, b: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
n = min(len(a), len(b))
return a[:n], b[:n]
def _rms(x: np.ndarray, eps: float = 1e-9) -> float:
return float(np.sqrt(np.mean(x**2) + eps))
def _rms_target(x: np.ndarray, target_dbfs: float = -20.0) -> np.ndarray:
"""Scale to approx target dBFS RMS, then hard-limit peaks."""
target_amp = 10.0 ** (target_dbfs / 20.0)
cur = _rms(x)
if cur > 0:
x = x * (target_amp / cur)
x = np.clip(x, -1.0, 1.0).astype(np.float32)
return x
def _loudness_match_to_ref(ref: np.ndarray, cand: np.ndarray, sr: int) -> Tuple[np.ndarray, str]:
"""Match cand loudness to ref (LUFS if available, else RMS)."""
if len(ref) < sr // 10 or len(cand) < sr // 10:
return cand, "skipped (clip too short)"
if _HAVE_PYLN:
try:
meter = pyln.Meter(sr)
l_ref = meter.integrated_loudness(ref.astype(np.float64))
l_cand = meter.integrated_loudness(cand.astype(np.float64))
gain_db = l_ref - l_cand
cand_adj = cand * (10.0 ** (gain_db / 20.0))
return cand_adj.astype(np.float32), f"LUFS matched (Δ {gain_db:+.2f} dB)"
except Exception:
pass
# RMS fallback
eps = 1e-9
rms_ref = np.sqrt(np.mean(ref**2) + eps)
rms_cand = np.sqrt(np.mean(cand**2) + eps)
gain = rms_ref / (rms_cand + eps)
cand_adj = cand * gain
gain_db = 20.0 * np.log10(gain + eps)
return cand_adj.astype(np.float32), f"RMS matched (Δ {gain_db:+.2f} dB)"
def _make_ab_alternating(orig: np.ndarray, enh: np.ndarray, sr: int, seg_sec: float = 2.0) -> np.ndarray:
"""A/B track flips Original→Enhanced every seg_sec."""
seg_n = max(1, int(seg_sec * sr))
orig, enh = _align_lengths(orig, enh)
n = len(orig)
out = []
pos = 0
flag = True
while pos < n:
end = min(pos + seg_n, n)
out.append(orig[pos:end] if flag else enh[pos:end])
pos = end
flag = not flag
return np.concatenate(out, axis=0).astype(np.float32)
# -----------------------------
# Alignment for delta (cross-correlation)
# -----------------------------
def _next_pow_two(n: int) -> int:
n -= 1
shift = 1
while (n + 1) & n:
n |= n >> shift
shift <<= 1
return n + 1
def _align_by_xcorr(a: np.ndarray, b: np.ndarray, max_shift: int) -> Tuple[np.ndarray, np.ndarray, int]:
"""
Align b to a using FFT cross-correlation. Only accept shifts within ±max_shift.
Returns (a_aligned, b_aligned, shift) where positive shift means b lags a and is shifted forward.
"""
# Pad to same length
n = max(len(a), len(b))
a_pad = np.zeros(n, dtype=np.float32); a_pad[:len(a)] = a
b_pad = np.zeros(n, dtype=np.float32); b_pad[:len(b)] = b
N = _next_pow_two(2 * n - 1)
A = np.fft.rfft(a_pad, N)
B = np.fft.rfft(b_pad, N)
corr = np.fft.irfft(A * np.conj(B), N)
# lags: 0..N-1, convert so center at zero lag
corr = np.concatenate((corr[-(n-1):], corr[:n]))
lags = np.arange(-(n-1), n)
# Limit to window
w = (lags >= -max_shift) & (lags <= max_shift)
lag = int(lags[w][np.argmax(corr[w])])
if lag > 0:
# b lags behind a -> shift b forward
b_shift = np.concatenate((b[lag:], np.zeros(lag, dtype=np.float32)))
a_shift = a[:len(b_shift)]
b_shift = b_shift[:len(a_shift)]
return a_shift, b_shift, lag
elif lag < 0:
# a lags -> shift a forward
lag = -lag
a_shift = np.concatenate((a[lag:], np.zeros(lag, dtype=np.float32)))
b_shift = b[:len(a_shift)]
a_shift = a_shift[:len(b_shift)]
return a_shift, b_shift, -lag
else:
# no shift
a2, b2 = _align_lengths(a, b)
return a2, b2, 0
# -----------------------------
# Model runners (with guards)
# -----------------------------
def _run_metricgan(path_16k: str) -> torch.Tensor:
enh = _get_metricgan()
with torch.no_grad():
out = enh.enhance_file(path_16k) # [1, T]
return out
def _run_sepformer(path_16k: str, dur_sec: float) -> Tuple[Optional[torch.Tensor], Optional[str]]:
"""Return (tensor, fallback_msg). If not safe to run, returns (None, reason)."""
if USE_GPU:
if dur_sec > MAX_SEPFORMER_SEC_GPU:
return None, f"SepFormer skipped (GPU clip {dur_sec:.1f}s > {MAX_SEPFORMER_SEC_GPU:.0f}s limit)"
else:
if not ALLOW_SEPFORMER_CPU:
return None, "SepFormer disabled on CPU (set ALLOW_SEPFORMER_CPU=1 to force)"
if dur_sec > MAX_SEPFORMER_SEC_CPU:
return None, f"SepFormer skipped (CPU clip {dur_sec:.1f}s > {MAX_SEPFORMER_SEC_CPU:.0f}s limit)"
try:
sep = _get_sepformer()
with torch.no_grad():
out = sep.separate_file(path=path_16k)
if isinstance(out, torch.Tensor):
if out.dim() == 1:
out = out.unsqueeze(0)
elif out.dim() == 2 and out.shape[0] > 1:
out = out[:1, :]
return out, None
if hasattr(out, "numpy"):
t = torch.from_numpy(out.numpy())
if t.dim() == 1:
t = t.unsqueeze(0)
elif t.dim() == 2 and t.shape[0] > 1:
t = t[:1, :]
return t, None
if isinstance(out, (list, tuple)):
t = torch.tensor(out[0] if isinstance(out[0], (np.ndarray, list)) else out, dtype=torch.float32)
if t.dim() == 1:
t = t.unsqueeze(0)
return t, None
return None, "SepFormer returned unexpected format; skipped"
except Exception as e:
return None, f"SepFormer error: {e.__class__.__name__}"
def _run_dual_stage(path_16k: str, dur_sec: float) -> Tuple[Optional[torch.Tensor], Optional[str]]:
"""SepFormer → MetricGAN+. Applies same guards; returns (tensor, msg)."""
stage1, msg = _run_sepformer(path_16k, dur_sec)
if stage1 is None:
return None, msg or "SepFormer unavailable"
# Save stage1 to temp for MetricGAN
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_mid:
sf.write(tmp_mid.name, stage1.squeeze(0).numpy(), 16000, subtype="PCM_16")
tmp_mid.flush()
mid_path = tmp_mid.name
try:
stage2 = _run_metricgan(mid_path)
return stage2, None
except Exception as e:
return None, f"MetricGAN after SepFormer failed: {e.__class__.__name__}"
finally:
try:
os.remove(mid_path)
except Exception:
pass
# -----------------------------
# Spectral residual delta (cleaner noise-only preview)
# -----------------------------
def _delta_spectral_residual(orig: np.ndarray, enh: np.ndarray, sr: int) -> np.ndarray:
"""
Build a noise-focused residual via STFT magnitudes:
R_mag = ReLU(|X| - |Y|)
use original phase for iSTFT reconstruction
Then gentle HPF/LPF and RMS leveling for listenability.
"""
# Torch tensors
x = torch.from_numpy(orig).to(torch.float32)
y = torch.from_numpy(enh).to(torch.float32)
n_fft = 1024
hop = 256
win = torch.hann_window(n_fft)
# STFTs
X = torch.stft(x, n_fft=n_fft, hop_length=hop, window=win, return_complex=True, center=True)
Y = torch.stft(y, n_fft=n_fft, hop_length=hop, window=win, return_complex=True, center=True)
# Positive residual magnitudes
R_mag = torch.relu(torch.abs(X) - torch.abs(Y))
# Mild temporal smoothing (moving average across time)
R_mag = torch.nn.functional.avg_pool1d(
R_mag.unsqueeze(0), kernel_size=3, stride=1, padding=1
).squeeze(0)
# Reconstruct residual with original phase
phase = torch.angle(X)
R_complex = torch.polar(R_mag, phase)
r = torch.istft(R_complex, n_fft=n_fft, hop_length=hop, window=win, length=len(orig))
# HPF/LPF + light RMS leveling for comfort
r_t = r.unsqueeze(0)
r_t = _highpass(r_t, sr, cutoff_hz=80.0)
r_t = _lowpass(r_t, sr, cutoff_hz=9000.0)
r_np = r_t.squeeze(0).numpy().astype(np.float32)
r_np = _rms_target(r_np, target_dbfs=-24.0)
return r_np
# -----------------------------
# Core pipeline
# -----------------------------
def _enhance_numpy_audio(
audio: Tuple[int, np.ndarray],
mode: str = "MetricGAN+ (denoise)",
dry_wet: float = 1.0, # 0..1
presence_db: float = 0.0,
lowcut_hz: float = 0.0,
out_sr: Optional[int] = None,
loudness_match: bool = True,
) -> Tuple[int, np.ndarray, str]:
"""
Returns: (sr_out, enhanced, metrics_text)
"""
sr_in, wav_np = audio
wav_mono = _sanitize(_to_mono(wav_np))
if wav_mono.size < 32:
sr_out = sr_in if sr_in else 16000
silence = np.zeros(int(sr_out * 1.0), dtype=np.float32)
return sr_out, silence, "Input too short; returned silence."
dry_t = torch.from_numpy(wav_mono).unsqueeze(0) # [1, T @ sr_in]
wav_16k = _resample_torch(dry_t, sr_in, 16000)
dur_sec = float(wav_16k.shape[-1]) / 16000.0
# Write temp input for model runners
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_in:
sf.write(tmp_in.name, wav_16k.squeeze(0).numpy(), 16000, subtype="PCM_16")
tmp_in.flush()
path_16k = tmp_in.name
fallback_note = None
try:
if mode.startswith("MetricGAN"):
proc = _run_metricgan(path_16k)
elif mode.startswith("SepFormer"):
proc, msg = _run_sepformer(path_16k, dur_sec)
if proc is None:
proc = wav_16k # bypass
fallback_note = f"[Fallback→Bypass] {msg}"
elif mode.startswith("Dual-Stage"):
proc, msg = _run_dual_stage(path_16k, dur_sec)
if proc is None:
# fall back to MetricGAN if SepFormer not possible
try:
proc = _run_metricgan(path_16k)
fallback_note = f"[Fallback→MetricGAN+] {msg}"
except Exception as e:
proc = wav_16k # ultimate fallback: bypass
fallback_note = f"[Fallback→Bypass] {msg or ''} / MetricGAN error: {e.__class__.__name__}"
else: # Bypass (EQ only)
proc = wav_16k
finally:
try:
os.remove(path_16k)
except Exception:
pass
# Polish on processed only
proc = _highpass(proc, 16000, lowcut_hz)
proc = _presence_boost(proc, 16000, presence_db)
proc = _limit_peak(proc, target_dbfs=-1.0)
# Resample both to output rate for mixing & export
sr_out = sr_in if (out_sr is None or out_sr <= 0) else int(out_sr)
proc_out = _resample_torch(proc, 16000, sr_out).squeeze(0).numpy().astype(np.float32)
dry_out = _resample_torch(dry_t, sr_in, sr_out).squeeze(0).numpy().astype(np.float32)
# Mix dry/wet
proc_out, dry_out = _align_lengths(proc_out, dry_out)
dry_wet = float(np.clip(dry_wet, 0.0, 1.0))
enhanced = proc_out * dry_wet + dry_out * (1.0 - dry_wet)
# Loudness match
loud_text = "off"
if loudness_match:
enhanced, loud_text = _loudness_match_to_ref(dry_out, enhanced, sr_out)
enhanced = _sanitize(enhanced)
# Metrics
eps = 1e-9
rms_delta_hint = np.sqrt(np.mean((dry_out - enhanced)**2) + eps)
metrics = (
f"Mode: {mode} | Dry/Wet: {dry_wet*100:.0f}% | Presence: {presence_db:+.1f} dB | "
f"Low-cut: {lowcut_hz:.0f} Hz | Loudness match: {loud_text} | Device: {'GPU' if USE_GPU else 'CPU'} | "
f"Clip @16k: {dur_sec:.2f}s"
)
if fallback_note:
metrics += f"\n{fallback_note}"
metrics += f"\nΔ (raw) RMS: {20*np.log10(rms_delta_hint+eps):+.2f} dBFS"
return sr_out, enhanced, metrics
# -----------------------------
# Presets
# -----------------------------
PRESETS: Dict[str, Dict[str, Any]] = {
"Ultimate Clean Voice": {
"mode": "Dual-Stage (SepFormer → MetricGAN+)",
"dry_wet": 0.92,
"presence_db": 1.5,
"lowcut_hz": 80.0,
"loudness_match": True,
},
"Natural Speech": {
"mode": "MetricGAN+ (denoise)",
"dry_wet": 0.85,
"presence_db": 1.0,
"lowcut_hz": 50.0,
"loudness_match": True,
},
"Podcast Studio": {
"mode": "MetricGAN+ (denoise)",
"dry_wet": 0.90,
"presence_db": 2.0,
"lowcut_hz": 75.0,
"loudness_match": True,
},
"Room Dereverb": {
"mode": "SepFormer (dereverb+denoise)",
"dry_wet": 0.70,
"presence_db": 0.5,
"lowcut_hz": 60.0,
"loudness_match": True,
},
"Music + Voice Safe": {
"mode": "MetricGAN+ (denoise)",
"dry_wet": 0.60,
"presence_db": 0.0,
"lowcut_hz": 40.0,
"loudness_match": True,
},
"Phone Call Rescue": {
"mode": "MetricGAN+ (denoise)",
"dry_wet": 0.88,
"presence_db": 2.0,
"lowcut_hz": 100.0,
"loudness_match": True,
},
"Gentle Denoise": {
"mode": "MetricGAN+ (denoise)",
"dry_wet": 0.65,
"presence_db": 0.0,
"lowcut_hz": 0.0,
"loudness_match": True,
},
"Custom": {}
}
def _apply_preset(preset_name: str):
cfg = PRESETS.get(preset_name, {})
def upd(val=None):
return gr.update(value=val) if val is not None else gr.update()
if not cfg or preset_name == "Custom":
return upd(), upd(), upd(), upd(), upd()
return (
upd(cfg["mode"]),
upd(int(round(cfg["dry_wet"] * 100))),
upd(float(cfg["presence_db"])),
upd(float(cfg["lowcut_hz"])),
upd(bool(cfg["loudness_match"])),
)
# -----------------------------
# Gradio UI
# -----------------------------
def gradio_enhance(
audio: Tuple[int, np.ndarray],
mode: str,
dry_wet_pct: float,
presence_db: float,
lowcut_hz: float,
output_sr: str,
loudness_match: bool,
delta_mode: str,
delta_align: bool,
delta_gain_db: float,
):
if audio is None:
return None, None, None, "No audio provided."
out_sr = None
if output_sr in {"44100", "48000"}:
out_sr = int(output_sr)
# Enhance
sr_out, enhanced, metrics = _enhance_numpy_audio(
audio,
mode=mode,
dry_wet=dry_wet_pct / 100.0,
presence_db=float(presence_db),
lowcut_hz=float(lowcut_hz),
out_sr=out_sr,
loudness_match=bool(loudness_match),
)
# Build A/B and Delta (polished)
sr_in, wav_np = audio
orig_mono = _sanitize(_to_mono(wav_np))
orig_at_out = _resample_torch(torch.from_numpy(orig_mono).unsqueeze(0), sr_in, sr_out).squeeze(0).numpy().astype(np.float32)
# Optional alignment to reduce phase/latency offsets
a_for_ab, b_for_ab = _align_lengths(orig_at_out, enhanced)
if delta_align:
max_shift = int(0.05 * sr_out) # up to 50 ms
a_for_ab, b_for_ab, lag = _align_by_xcorr(a_for_ab, b_for_ab, max_shift=max_shift)
metrics += f"\nDelta alignment: shift={lag} samples"
# A/B alternating
ab_alt = _make_ab_alternating(a_for_ab, b_for_ab, sr_out, seg_sec=2.0)
# Delta (noise-focused if selected)
if delta_mode.startswith("Spectral"):
delta = _delta_spectral_residual(a_for_ab, b_for_ab, sr_out)
else:
delta = a_for_ab - b_for_ab
# Gentle polish on raw difference
d_t = torch.from_numpy(delta).unsqueeze(0)
d_t = _highpass(d_t, sr_out, cutoff_hz=80.0)
d_t = _lowpass(d_t, sr_out, cutoff_hz=9000.0)
delta = d_t.squeeze(0).numpy().astype(np.float32)
delta = _rms_target(delta, target_dbfs=-24.0)
# Apply user delta gain
delta *= 10.0 ** (delta_gain_db / 20.0)
delta = np.clip(delta, -1.0, 1.0).astype(np.float32)
return (sr_out, enhanced), (sr_out, ab_alt), (sr_out, delta), metrics
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
f"## Voice Clarity Booster — Presets, A/B, *Polished Delta*, Loudness Match \n"
f"**Device:** {'GPU' if USE_GPU else 'CPU'} · "
f"SepFormer limits — CPU≤{MAX_SEPFORMER_SEC_CPU:.0f}s, GPU≤{MAX_SEPFORMER_SEC_GPU:.0f}s"
+ ("" if USE_GPU or ALLOW_SEPFORMER_CPU else " · (SepFormer disabled on CPU)")
)
with gr.Row():
with gr.Column(scale=1):
in_audio = gr.Audio(
sources=["upload", "microphone"],
type="numpy",
label="Input",
)
preset = gr.Dropdown(
choices=list(PRESETS.keys()),
value="Ultimate Clean Voice",
label="Preset",
)
mode = gr.Radio(
choices=[
"MetricGAN+ (denoise)",
"SepFormer (dereverb+denoise)",
"Dual-Stage (SepFormer → MetricGAN+)",
"Bypass (EQ only)"
],
value="Dual-Stage (SepFormer → MetricGAN+)",
label="Mode",
)
dry_wet = gr.Slider(
minimum=0, maximum=100, value=92, step=1,
label="Dry/Wet Mix (%) — lower to reduce artifacts"
)
presence = gr.Slider(
minimum=-12, maximum=12, value=1.5, step=0.5, label="Presence Boost (dB)"
)
lowcut = gr.Slider(
minimum=0, maximum=200, value=80, step=5, label="Low-Cut (Hz)"
)
loudmatch = gr.Checkbox(value=True, label="Loudness-match enhanced to original")
out_sr = gr.Radio(
choices=["Original", "44100", "48000"],
value="Original",
label="Output Sample Rate",
)
# Delta controls
gr.Markdown("### Delta (what changed)")
delta_mode = gr.Dropdown(
choices=["Spectral Residual (noise-only)", "Raw Difference"],
value="Spectral Residual (noise-only)",
label="Delta Mode",
)
delta_align = gr.Checkbox(value=True, label="Align original & enhanced for delta (recommended)")
delta_gain = gr.Slider(minimum=-12, maximum=24, value=6, step=1, label="Delta Gain (dB)")
preset.change(
_apply_preset,
inputs=[preset],
outputs=[mode, dry_wet, presence, lowcut, loudmatch],
)
btn = gr.Button("Enhance", variant="primary")
with gr.Column(scale=1):
out_audio = gr.Audio(type="numpy", label="Enhanced (autoplay)", autoplay=True)
ab_audio = gr.Audio(type="numpy", label="A/B Alternating (2s O → 2s E)")
delta_audio = gr.Audio(type="numpy", label="Delta (polished)")
metrics = gr.Markdown("")
btn.click(
gradio_enhance,
inputs=[in_audio, mode, dry_wet, presence, lowcut, out_sr, loudmatch, delta_mode, delta_align, delta_gain],
outputs=[out_audio, ab_audio, delta_audio, metrics],
)
# Launch unguarded so Spaces initializes
demo.launch()
|