#!/usr/bin/env python3 """ SmolAgent Test Client A Gradio-based test client for the BasicSmolAgent that: 1. Fetches random questions from the evaluation API 2. Executes the agent with detailed tracking 3. Displays comprehensive execution information 4. Supports custom question testing 5. Tests against evaluation questions from questions_evaluated.py Usage: python agent_test_client.py """ import gradio as gr import requests from agent import BasicSmolAgent import traceback import time from contextlib import redirect_stdout, redirect_stderr import io import pandas as pd from questions_evaluated import questions import json import sys from typing import Optional, Dict, Any, List # Configuration DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" class AgentExecutionTracker: """Tracks and logs agent execution with detailed information""" def __init__(self): self.reset() def reset(self): """Reset tracking for new execution""" self.logs = [] self.start_time = "" self.end_time = "" self.question = "" self.agent_response = "" self.final_answer = "" self.captured_stdout = "" self.captured_stderr = "" def log(self, level, message): """Add a log entry with timestamp""" timestamp = time.strftime("%H:%M:%S") self.logs.append(f"[{timestamp}] {level}: {message}") def get_formatted_log(self): """Get comprehensive formatted execution log""" lines = [ "๐Ÿค– AGENT EXECUTION LOG", "=" * 60, f"๐Ÿ“ Question: {self.question}", f"โฐ Started: {self.start_time}", f"โฑ๏ธ Ended: {self.end_time}", "", "๐Ÿ“‹ EXECUTION STEPS:", "-" * 40 ] # Add all log entries for log_entry in self.logs: lines.append(log_entry) # Add captured outputs if any if self.captured_stdout.strip(): lines.extend([ "", "๐Ÿ“ค CAPTURED STDOUT:", "-" * 30, self.captured_stdout, "-" * 30 ]) if self.captured_stderr.strip(): lines.extend([ "", "โš ๏ธ CAPTURED STDERR:", "-" * 30, self.captured_stderr, "-" * 30 ]) # Add final results lines.extend([ "", "๐ŸŽฏ RESULTS:", "-" * 20, f"Agent Response Length: {len(self.agent_response)} characters", ]) if self.final_answer: lines.append(f"Final Answer: {self.final_answer}") return "\n".join(lines) class SmolAgentTester: """Main tester class that handles agent execution and API calls""" def __init__(self): self.agent = None self.tracker = AgentExecutionTracker() self.api_url = DEFAULT_API_URL def _initialize_agent(self): """Initialize the BasicSmolAgent if not already done""" if self.agent is None: try: self.tracker.log("INIT", "Initializing BasicSmolAgent...") self.agent = BasicSmolAgent() self.tracker.log("INIT", "โœ… BasicSmolAgent initialized successfully") return True except Exception as e: self.tracker.log("ERROR", f"Failed to initialize agent: {str(e)}") return False return True def fetch_random_question(self): """Fetch a random question from the evaluation API""" try: self.tracker.log("API", "Fetching random question from evaluation API...") response = requests.get(f"{self.api_url}/random-question", timeout=15) response.raise_for_status() question_data = response.json() task_id = question_data.get("task_id", "Unknown") question_text = question_data.get("question", "No question available") self.tracker.log("API", f"โœ… Successfully fetched question (Task ID: {task_id})") return question_data except requests.exceptions.Timeout: self.tracker.log("ERROR", "Request timeout - API may be slow or unavailable") return None except requests.exceptions.ConnectionError: self.tracker.log("ERROR", "Connection error - Check internet connection") return None except requests.exceptions.HTTPError as e: self.tracker.log("ERROR", f"HTTP error {e.response.status_code} - API may be unavailable") return None except Exception as e: self.tracker.log("ERROR", f"Unexpected error fetching question: {str(e)}") return None def execute_agent(self, question): """Execute the agent with comprehensive tracking""" # Reset tracker for new execution self.tracker.reset() self.tracker.question = question self.tracker.start_time = time.strftime("%H:%M:%S") try: # Initialize agent if needed if not self._initialize_agent(): self.tracker.end_time = time.strftime("%H:%M:%S") return "Failed to initialize agent" self.tracker.log("EXEC", "Starting agent execution...") self.tracker.log("QUESTION", f"Processing: {question[:100]}{'...' if len(question) > 100 else ''}") # Capture stdout and stderr during execution stdout_buffer = io.StringIO() stderr_buffer = io.StringIO() with redirect_stdout(stdout_buffer), redirect_stderr(stderr_buffer): result = self.agent(question) # Store captured outputs self.tracker.captured_stdout = stdout_buffer.getvalue() self.tracker.captured_stderr = stderr_buffer.getvalue() self.tracker.log("EXEC", "โœ… Agent execution completed successfully") # FIXED: Handle non-string results from agent original_type = type(result).__name__ if isinstance(result, str): result_str = result self.tracker.log("RESPONSE", f"Agent returned string ({len(result_str)} characters)") else: result_str = str(result) self.tracker.log("RESPONSE", f"Agent returned {original_type}: {result}") self.tracker.log("RESPONSE", f"Converted to string ({len(result_str)} characters)") # Extract final answer if present in string version if "FINAL ANSWER:" in result_str: final_answer = result_str.split("FINAL ANSWER:")[-1].strip() self.tracker.final_answer = final_answer self.tracker.log("ANSWER", f"Extracted final answer: {final_answer[:50]}{'...' if len(final_answer) > 50 else ''}") else: # If no "FINAL ANSWER:" format and original was not a string, use the converted string if not isinstance(result, str): self.tracker.final_answer = result_str self.tracker.log("ANSWER", f"No FINAL ANSWER format, using converted {original_type}: {result_str}") else: self.tracker.final_answer = "No explicit final answer found" self.tracker.log("ANSWER", "No explicit FINAL ANSWER format detected") self.tracker.agent_response = result_str self.tracker.end_time = time.strftime("%H:%M:%S") return result_str except Exception as e: error_msg = f"Agent execution failed: {str(e)}" self.tracker.log("ERROR", error_msg) self.tracker.log("ERROR", f"Traceback: {traceback.format_exc()}") self.tracker.end_time = time.strftime("%H:%M:%S") return f"ERROR: {error_msg}" # Global tester instance tester = SmolAgentTester() def test_random_question(): """Handle random question testing""" try: # Fetch random question question_data = tester.fetch_random_question() if not question_data: return ( "โŒ Failed to fetch random question from API", "Please check your internet connection and try again.\nThe evaluation API might be temporarily unavailable.", "No response available" ) question_text = question_data.get("question", "No question text available") task_id = question_data.get("task_id", "Unknown") # Execute agent agent_response = tester.execute_agent(question_text) # Format outputs question_info = f"๐Ÿ“‹ Task ID: {task_id}\n\n๐Ÿ“ Question:\n{question_text}" execution_log = tester.tracker.get_formatted_log() result_summary = f"๐Ÿค– Agent Response:\n{agent_response}\n\n" if tester.tracker.final_answer: result_summary += f"๐ŸŽฏ Final Answer: {tester.tracker.final_answer}" return question_info, execution_log, result_summary except Exception as e: error_msg = f"Unexpected error in random question test: {str(e)}\n{traceback.format_exc()}" return f"โŒ Error: {error_msg}", "", "" def test_custom_question(custom_question): """Handle custom question testing""" if not custom_question.strip(): return "โŒ Please enter a question to test", "", "" try: # Execute agent with custom question agent_response = tester.execute_agent(custom_question.strip()) # Format outputs question_info = f"๐Ÿ“ Custom Question:\n{custom_question.strip()}" execution_log = tester.tracker.get_formatted_log() result_summary = f"๐Ÿค– Agent Response:\n{agent_response}\n\n" if tester.tracker.final_answer: result_summary += f"๐ŸŽฏ Final Answer: {tester.tracker.final_answer}" return question_info, execution_log, result_summary except Exception as e: error_msg = f"Unexpected error in custom question test: {str(e)}\n{traceback.format_exc()}" return f"โŒ Error: {error_msg}", "", "" def get_evaluation_questions(): """Get list of evaluation questions for dropdown""" question_choices = [] for i, q in enumerate(questions): task_id = q.get("task_id", "Unknown") question_text = q.get("question", "No question") level = q.get("Level", "Unknown") # Truncate long questions for display display_text = question_text[:100] + "..." if len(question_text) > 100 else question_text label = f"[Level {level}] {task_id[:8]}... - {display_text}" question_choices.append((label, i)) return question_choices def test_evaluation_question(question_index): """Handle evaluation question testing""" if question_index is None: return "โŒ Please select a question to test", "", "", "" try: selected_question = questions[question_index] question_text = selected_question.get("question", "No question text") task_id = selected_question.get("task_id", "Unknown") level = selected_question.get("Level", "Unknown") file_name = selected_question.get("file_name", "") # Execute agent agent_response = tester.execute_agent(question_text) # Format outputs question_info = f"๐Ÿ“‹ Task ID: {task_id}\n๐Ÿ“Š Level: {level}\n๐Ÿ“Ž File: {file_name if file_name else 'None'}\n\n๐Ÿ“ Question:\n{question_text}" execution_log = tester.tracker.get_formatted_log() result_summary = f"๐Ÿค– Agent Response:\n{agent_response}\n\n" if tester.tracker.final_answer: result_summary += f"๐ŸŽฏ Final Answer: {tester.tracker.final_answer}" # Get the correct answer correct_answer = get_correct_answer(task_id) if correct_answer: correct_answer_display = f"โœ… **Correct Answer:**\n{correct_answer}\n\n๐Ÿ“‹ **Task ID:** {task_id}\n๐Ÿ“Š **Level:** {level}" else: correct_answer_display = f"โ“ **Correct Answer:**\nNot found in metadata\n\n๐Ÿ“‹ **Task ID:** {task_id}\n๐Ÿ“Š **Level:** {level}" return question_info, execution_log, result_summary, correct_answer_display except Exception as e: error_msg = f"Unexpected error in evaluation question test: {str(e)}\n{traceback.format_exc()}" return f"โŒ Error: {error_msg}", "", "", "" def test_all_evaluation_questions(): """Run all evaluation questions and return results""" try: results = [] total_questions = len(questions) progress_info = f"๐Ÿ”„ Running {total_questions} evaluation questions...\n\n" for i, question_data in enumerate(questions): question_text = question_data.get("question", "No question text") task_id = question_data.get("task_id", "Unknown") level = question_data.get("Level", "Unknown") progress_info += f"Processing question {i+1}/{total_questions}: {task_id[:8]}...\n" try: # Execute agent agent_response = tester.execute_agent(question_text) # Extract final answer final_answer = tester.tracker.final_answer if tester.tracker.final_answer else "No answer extracted" # Get correct answer correct_answer = get_correct_answer(task_id) correct_answer_display = correct_answer if correct_answer else "Not found" results.append({ "Task ID": task_id, "Level": level, "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, "Agent Answer": final_answer, "Correct Answer": correct_answer_display, "Response Length": len(agent_response), "Status": "Success" }) except Exception as e: # Get correct answer even if agent failed correct_answer = get_correct_answer(task_id) correct_answer_display = correct_answer if correct_answer else "Not found" results.append({ "Task ID": task_id, "Level": level, "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, "Agent Answer": f"ERROR: {str(e)}", "Correct Answer": correct_answer_display, "Response Length": 0, "Status": "Failed" }) # Create DataFrame for results results_df = pd.DataFrame(results) # Summary statistics success_count = len([r for r in results if r["Status"] == "Success"]) failure_count = total_questions - success_count summary = f""" โœ… EVALUATION COMPLETE ๐Ÿ“Š Summary: - Total Questions: {total_questions} - Successful: {success_count} - Failed: {failure_count} - Success Rate: {(success_count/total_questions)*100:.1f}% """ return summary, results_df, "All evaluation questions processed!" except Exception as e: error_msg = f"Error running all evaluation questions: {str(e)}\n{traceback.format_exc()}" return f"โŒ Error: {error_msg}", pd.DataFrame(), "" def create_interface(): """Create the main Gradio interface""" # Custom CSS for better styling css = """ .gradio-container { max-width: 1200px !important; } .tab-nav { font-size: 16px !important; } """ with gr.Blocks( title="SmolAgent Test Client", css=css, theme=gr.themes.Base( primary_hue="blue", secondary_hue="gray" ) ) as interface: # Header gr.Markdown(""" # ๐Ÿงช SmolAgent Test Client **Interactive testing environment for the BasicSmolAgent** This tool allows you to thoroughly test the agent's capabilities with detailed execution tracking. You can fetch random questions from the evaluation API, test with custom questions, or run specific evaluation questions. """) # Main tabs with gr.Tabs(): # Random Question Tab with gr.TabItem("๐ŸŽฒ Random Question Test", elem_id="random-tab"): gr.Markdown("### Fetch and test a random question from the evaluation API") gr.Markdown("Click the button below to fetch a random question and run the agent on it.") random_btn = gr.Button( "๐ŸŽฒ Fetch Random Question & Execute Agent", variant="primary", size="lg", scale=1 ) # Output sections with gr.Row(): with gr.Column(scale=1): question_display = gr.Textbox( label="๐Ÿ“‹ Question Information", lines=6, max_lines=10, interactive=False, show_copy_button=True ) with gr.Column(scale=1): result_display = gr.Textbox( label="๐ŸŽฏ Agent Response & Final Answer", lines=6, max_lines=10, interactive=False, show_copy_button=True ) execution_log_display = gr.Textbox( label="๐Ÿ” Detailed Execution Log", lines=20, max_lines=30, interactive=False, show_copy_button=True, placeholder="Execution log will appear here after running the agent..." ) # Wire up the random question functionality random_btn.click( fn=test_random_question, inputs=[], outputs=[question_display, execution_log_display, result_display] ) # Custom Question Tab with gr.TabItem("โœ๏ธ Custom Question Test", elem_id="custom-tab"): gr.Markdown("### Test the agent with your own custom question") gr.Markdown("Enter any question you'd like to test the agent with.") custom_input = gr.Textbox( label="๐Ÿ“ Your Question", lines=3, max_lines=5, placeholder="Enter your question here...\n\nExample: What is the square root of 144?", show_copy_button=True ) custom_btn = gr.Button( "๐Ÿš€ Execute Agent on Custom Question", variant="secondary", size="lg" ) # Output sections for custom questions with gr.Row(): with gr.Column(scale=1): custom_question_display = gr.Textbox( label="๐Ÿ“‹ Question Information", lines=4, max_lines=8, interactive=False, show_copy_button=True ) with gr.Column(scale=1): custom_result_display = gr.Textbox( label="๐ŸŽฏ Agent Response & Final Answer", lines=4, max_lines=8, interactive=False, show_copy_button=True ) custom_execution_log_display = gr.Textbox( label="๐Ÿ” Detailed Execution Log", lines=20, max_lines=30, interactive=False, show_copy_button=True, placeholder="Execution log will appear here after running the agent..." ) # Wire up the custom question functionality custom_btn.click( fn=test_custom_question, inputs=[custom_input], outputs=[custom_question_display, custom_execution_log_display, custom_result_display] ) # Evaluation Questions Tab with gr.TabItem("๐Ÿ“Š Evaluation Questions", elem_id="eval-tab"): gr.Markdown("### Test with specific evaluation questions") gr.Markdown(f"Select from {len(questions)} evaluation questions or run all of them.") with gr.Row(): with gr.Column(scale=2): question_dropdown = gr.Dropdown( choices=get_evaluation_questions(), label="๐Ÿ“ Select Evaluation Question", value=None ) with gr.Column(scale=1): eval_single_btn = gr.Button( "๐Ÿš€ Run Selected Question", variant="secondary", size="lg" ) eval_all_btn = gr.Button( "๐Ÿ”„ Run ALL Evaluation Questions", variant="primary", size="lg" ) gr.Markdown("โš ๏ธ **Warning**: Running all questions may take a long time!") # Single question results with gr.Row(): with gr.Column(scale=1): eval_question_display = gr.Textbox( label="๐Ÿ“‹ Question Information", lines=6, max_lines=10, interactive=False, show_copy_button=True ) with gr.Column(scale=1): eval_result_display = gr.Textbox( label="๐ŸŽฏ Agent Response & Final Answer", lines=6, max_lines=10, interactive=False, show_copy_button=True ) with gr.Column(scale=1): eval_correct_answer_display = gr.Textbox( label="โœ… Correct Answer", lines=6, max_lines=10, interactive=False, show_copy_button=True, placeholder="Correct answer will appear here..." ) eval_execution_log_display = gr.Textbox( label="๐Ÿ” Detailed Execution Log", lines=15, max_lines=25, interactive=False, show_copy_button=True, placeholder="Execution log will appear here after running a question..." ) # All questions results gr.Markdown("### ๐Ÿ“Š Batch Results") batch_summary_display = gr.Textbox( label="๐Ÿ“ˆ Batch Summary", lines=8, interactive=False, show_copy_button=True, placeholder="Summary will appear here after running all questions..." ) batch_results_display = gr.DataFrame( label="๐Ÿ“‹ Detailed Results Table", headers=["Task ID", "Level", "Question", "Agent Answer", "Correct Answer", "Response Length", "Status"], datatype=["str", "str", "str", "str", "str", "number", "str"], interactive=False, wrap=True ) batch_status_display = gr.Textbox( label="๐Ÿ”„ Status", lines=2, interactive=False, placeholder="Status updates will appear here..." ) # Wire up evaluation question functionality eval_single_btn.click( fn=test_evaluation_question, inputs=[question_dropdown], outputs=[eval_question_display, eval_execution_log_display, eval_result_display, eval_correct_answer_display] ) eval_all_btn.click( fn=test_all_evaluation_questions, inputs=[], outputs=[batch_summary_display, batch_results_display, batch_status_display] ) # Footer information gr.Markdown("---") gr.Markdown(""" ### ๐Ÿ“š Features & Information **๐Ÿ” Execution Tracking:** - Comprehensive step-by-step logging with timestamps - Capture of stdout/stderr during agent execution - Detailed error reporting and stack traces - Performance timing information **๐ŸŽฏ Response Analysis:** - Full agent response display - Automatic final answer extraction - Response length and format analysis **โšก Testing Capabilities:** - Random questions from the evaluation API endpoint - Custom question testing with any input - Individual evaluation question testing - Batch processing of all evaluation questions - Copy-friendly logs for external analysis - Real-time execution monitoring **๐Ÿ”ง Technical Details:** - Uses the existing BasicSmolAgent from agent.py - Connects to: `https://agents-course-unit4-scoring.hf.space/random-question` - Processes questions from questions_evaluated.py - Captures all agent tool usage and reasoning steps - Provides detailed execution diagnostics """) gr.Markdown(""" ### ๐Ÿš€ Quick Start Guide 1. **Random Questions**: Click "Fetch Random Question & Execute Agent" to test with API questions 2. **Custom Questions**: Enter your own question and click "Execute Agent on Custom Question" 3. **Evaluation Questions**: Select a specific evaluation question or run all of them 4. **Review Results**: Check execution logs for detailed insights into agent processing 5. **Batch Analysis**: Use the "Run ALL" feature to get comprehensive performance metrics """) return interface def main(): """Main function to launch the test client""" print("๐Ÿš€ Starting SmolAgent Test Client...") print("๐Ÿ“ก API Endpoint:", DEFAULT_API_URL) print("๐Ÿค– Agent Type: BasicSmolAgent") print(f"๐Ÿ“Š Evaluation Questions: {len(questions)} loaded") print("-" * 50) # Create and launch interface interface = create_interface() interface.launch( debug=True, share=False, show_error=True, server_name="0.0.0.0", # Allow external connections server_port=7860 ) def load_metadata() -> Dict[str, str]: """Load metadata from metadata.jsonl and return a mapping of task_id to final answer""" metadata = {} try: with open('metadata.jsonl', 'r', encoding='utf-8') as f: for line in f: line = line.strip() if line: try: data = json.loads(line) task_id = data.get('task_id') final_answer = data.get('Final answer') if task_id and final_answer is not None: metadata[task_id] = str(final_answer) except json.JSONDecodeError as e: print(f"Warning: Could not parse JSON line: {line[:100]}...") continue except FileNotFoundError: print("Warning: metadata.jsonl file not found") except Exception as e: print(f"Warning: Error loading metadata: {e}") return metadata def get_correct_answer(task_id: str) -> Optional[str]: """Get the correct answer for a given task_id""" metadata = load_metadata() return metadata.get(task_id) if __name__ == "__main__": main()