import gradio as gr from gensim.models import TfidfModel from gensim.corpora import Dictionary from gensim.utils import simple_preprocess from gensim.parsing.preprocessing import remove_stopwords import numpy as np import warnings warnings.filterwarnings('ignore') # Example texts EXAMPLES = { "Scientific Abstract": """ Compatibility of systems of linear constraints over the set of natural numbers. Criteria of compatibility of a system of linear Diophantine equations, strict inequations, and nonstrict inequations are considered. Upper bounds for components of a minimal set of solutions and algorithms of construction of minimal generating sets of solutions for all types of systems are given. """, "News Article": """ Machine learning is revolutionizing the way we interact with technology. Artificial intelligence systems are becoming more sophisticated, enabling automated decision making and pattern recognition at unprecedented scales. Deep learning algorithms continue to improve, making breakthroughs in natural language processing and computer vision. """, "Technical Documentation": """ The user interface provides intuitive navigation through contextual menus and adaptive layouts. System responses are optimized for performance while maintaining high reliability standards. Database connections are pooled to minimize resource overhead and maximize throughput. """ } def preprocess_text(text): # Remove stopwords text = remove_stopwords(text) # Tokenize and clean text tokens = simple_preprocess(text, deacc=True) return ' '.join(tokens) # Initialize text processing components def extract_keywords(text, num_keywords=10, scores=True, min_length=1): # Preprocess text processed_text = remove_stopwords(text.lower()) tokens = simple_preprocess(processed_text, deacc=True) # Create dictionary and corpus dictionary = Dictionary([tokens]) corpus = [dictionary.doc2bow(tokens)] # Create TF-IDF model tfidf = TfidfModel(corpus) tfidf_corpus = tfidf[corpus][0] # Sort by scores sorted_keywords = sorted(tfidf_corpus, key=lambda x: x[1], reverse=True) # Get top keywords and filter by length results = [] for word_id, score in sorted_keywords: word = dictionary[word_id] if len(word.split()) >= min_length: if scores: results.append(f"• {word:<30} (score: {score:.4f})") else: results.append(f"• {word}") if len(results) >= num_keywords: break return "\n".join(results) if results else "No keywords found." # Update the interface click handler to match the function parameters extract_btn.click( extract_keywords, inputs=[input_text, num_keywords, show_scores, min_length], outputs=[output_text] ) def load_example(example_name): return EXAMPLES.get(example_name, "") # Create Gradio interface with gr.Blocks(title="Gensim Keyword Extraction") as demo: gr.Markdown("# 📑 Gensim Keyword Extraction") gr.Markdown("Extract keywords using Gensim's text processing capabilities") with gr.Row(): with gr.Column(scale=2): input_text = gr.Textbox( label="Input Text", placeholder="Enter your text here...", lines=8 ) example_dropdown = gr.Dropdown( choices=list(EXAMPLES.keys()), label="Load Example Text" ) with gr.Column(scale=1): ratio = gr.Slider( minimum=1, maximum=100, value=20, step=1, label="Keyword Ratio (%)" ) min_length = gr.Slider( minimum=1, maximum=5, value=1, step=1, label="Minimum Words per Keyword" ) show_scores = gr.Checkbox( label="Show Relevance Scores", value=True ) extract_btn = gr.Button( "Extract Keywords", variant="primary" ) output_text = gr.Textbox( label="Extracted Keywords", lines=10, interactive=False ) # Set up event handlers example_dropdown.change( load_example, inputs=[example_dropdown], outputs=[input_text] ) extract_btn.click( extract_keywords, inputs=[ input_text, ratio, show_scores, min_length ], outputs=[output_text] ) demo.launch()