# from flask import Flask, request, jsonify from handler import EndpointHandler # app = Flask(__name__) # handler = EndpointHandler() # @app.route('/process_image', methods=['POST']) # def process_image(): # data = request.json # if data is None: # return jsonify({'error': 'No JSON data received'}), 400 # try: # result_image = handler(data) # except Exception as e: # return jsonify({'error': str(e)}), 500 # # Convert PIL image to base64 string # buffered = BytesIO() # result_image.save(buffered, format="JPEG") # result_image_str = base64.b64encode(buffered.getvalue()).decode() # return jsonify({'result_image': result_image_str}) # if __name__ == '__main__': # app.run(debug=False,port=8001) import easyocr as ocr #OCR import torch import streamlit as st #Web App from PIL import Image #Image Processing import numpy as np #Image Processing from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler #title st.title("Make Your Videos More Beautiful with Devticks services") prompt = st.text_input("Enter your prompt here") #image uploader image = st.file_uploader(label = "Upload your image here",type=['png','jpg','jpeg']) @st.cache def load_model(): reader = ocr.Reader(['en'],model_storage_directory='.') return reader reader = load_model() #load model if image is not None: input_image = Image.open(image) #read image st.image(input_image) #display image with st.spinner("🤖 AI is at Work! "): model_id = "timbrooks/instruct-pix2pix" pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None) pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) images = pipe(prompt, image=image, num_inference_steps=10, image_guidance_scale=1).images images[0].show() # result_text = [] #empty list for results # for text in result: # result_text.append(text[1]) # st.write(result_text) #st.success("Here you go!") st.balloons() else: st.write("Upload an Image") st.caption("🤗")