import gradio as gr from openai import OpenAI import os """ Initialize the OpenAI client """ client = OpenAI( api_key="na", base_url=os.environ['API_BASE'] ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): """ Respond to a user message using the OpenAI client with streaming enabled. """ messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" try: # Call the OpenAI client with streaming for message_chunk in client.chat.completions.create( model="DeepSeek R1 Distill Llama 8B", # Replace with your model name messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, # Enable streaming stop=["<|im_start|>", "<|im_end|>"] ): # Extract the streamed content, if it exists token = message_chunk.choices[0].delta.content if token: # Only concatenate if content is not None response += token yield response except Exception as e: yield f"Error: {str(e)}" """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], title="Inference demo on AMD Instinct MI50", # description="tiiuae Falcon3 10B Q8 with llama.cpp", description="DevQuasar R1 8B Q8 with llama.cpp", ) if __name__ == "__main__": demo.launch()