import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer from evaluation import input_classification from explainer import CustomExplainer import numpy as np checkpoint = "Detsutut/medbit-assertion-negation" model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=3, local_files_only=True) tokenizer = AutoTokenizer.from_pretrained(checkpoint, local_files_only=True) cls_explainer = CustomExplainer(model, tokenizer) sentence = "Il paziente non mostra alcun segno di [entità]." def compute(text): output = input_classification(model=model, tokenizer=tokenizer, x=text, all_classes=True) exp = cls_explainer(text) entities = [] start = 0 words_and_exp = cls_explainer.merge_attributions(exp) low_threshold = np.percentile([float(abs(w)) for _, w in words_and_exp], 25) high_threshold = np.percentile([float(abs(w)) for _, w in words_and_exp], 75) for i, entity in enumerate(words_and_exp): if entity[1] < 0 and entity[1] < low_threshold: polarity = "-" entities.append({"entity": polarity, "start": start, "end": start + len(entity[0])}) elif entity[1] > 0 and entity[1] > high_threshold: polarity = "+" entities.append({"entity": polarity, "start": start, "end": start + len(entity[0])}) start = start + len(entity[0]) + 1 return output, gr.HighlightedText(label="Explanation", visible=True, color_map={"+": "green", "-": "red"}, value={"text": " ".join([e[0] for e in words_and_exp]), "entities": entities}, combine_adjacent=True, adjacent_separator=" ") with gr.Blocks(title="Inference GUI") as gui: text = gr.Textbox(label="Input Text", value=sentence) explanation = gr.HighlightedText(label="Explanation", visible=False) output = gr.Label(label="Predicted Label", num_top_classes=3) compute_btn = gr.Button("Predict") compute_btn.click(fn=compute, inputs=text, outputs=[output, explanation], api_name="compute") gui.launch()