import gradio as gr import torch from sahi.prediction import ObjectPrediction from sahi.utils.cv import visualize_object_predictions, read_image from ultralyticsplus import YOLO def yolov8_inference( image, model_path, image_size, conf_threshold, iou_threshold, ): """ YOLOv8 inference function Args: image: Input image model_path: Path to the model image_size: Image size conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ model = YOLO(f'{model_path}.pt') # set model parameters model.overrides['conf'] = conf_threshold # NMS confidence threshold model.overrides['iou'] = iou_threshold # NMS IoU threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # maximum number of detections per image results = model.predict(image, imgsz=image_size, return_outputs=True) object_prediction_list = [] for _, image_results in enumerate(results): if len(image_results)!=0: image_predictions_in_xyxy_format = image_results['det'] for pred in image_predictions_in_xyxy_format: x1, y1, x2, y2 = ( int(pred[0]), int(pred[1]), int(pred[2]), int(pred[3]), ) bbox = [x1, y1, x2, y2] score = pred[4] category_name = model.model.names[int(pred[5])] category_id = pred[5] object_prediction = ObjectPrediction( bbox=bbox, category_id=int(category_id), score=score, category_name=category_name, ) object_prediction_list.append(object_prediction) image = read_image(image) output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list) return output_image['image'] inputs = [ gr.Image(type="filepath", label="Input Image"), gr.Dropdown(["yolov8n", "yolov8m", "yolov8l", "yolov8x"], default="yolov8m", label="Model"), gr.Slider(minimum=320, maximum=1280, default=640, step=320, label="Image Size"), gr.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.Image(type="filepath", label="Output Image") title = "State-of-the-Art YOLO Models for Object detection" examples = [['demo_01.jpg', 'yolov8n', 640, 0.25, 0.45], ['demo_02.jpg', 'yolov8l', 640, 0.25, 0.45], ['demo_03.jpg', 'yolov8x', 1280, 0.25, 0.45]] demo_app = gr.Interface( fn=yolov8_inference, inputs=inputs, outputs=outputs, title=title, examples=examples, cache_examples=True, ) demo_app.launch(debug=True)