!!! note
To run this notebook in JupyterLab, load [`examples/ex2_0.ipynb`](https://github.com/DerwenAI/textgraphs/blob/main/examples/ex2_0.ipynb)
# bootstrap the _lemma graph_ with RDF triples
Show how to bootstrap definitions in a _lemma graph_ by loading RDF, e.g., for synonyms.
## environment
```python
from icecream import ic
from pyinstrument import Profiler
import pyvis
import textgraphs
```
```python
%load_ext watermark
```
```python
%watermark
```
Last updated: 2024-01-16T17:35:59.608787-08:00
Python implementation: CPython
Python version : 3.10.11
IPython version : 8.20.0
Compiler : Clang 13.0.0 (clang-1300.0.29.30)
OS : Darwin
Release : 21.6.0
Machine : x86_64
Processor : i386
CPU cores : 8
Architecture: 64bit
```python
%watermark --iversions
```
pyvis : 0.3.2
textgraphs: 0.5.0
sys : 3.10.11 (v3.10.11:7d4cc5aa85, Apr 4 2023, 19:05:19) [Clang 13.0.0 (clang-1300.0.29.30)]
## load the bootstrap definitions
Define the bootstrap RDF triples in N3/Turtle format: we define an entity `Werner` as a synonym for `Werner Herzog` by using the [`skos:broader`](https://www.w3.org/TR/skos-reference/#semantic-relations) relation. Keep in mind that this entity may also refer to other Werners...
```python
TTL_STR: str = """
@base .
@prefix dbo: .
@prefix skos: .
a dbo:Person ;
skos:prefLabel "Werner"@en .
a dbo:Person ;
skos:prefLabel "Werner Herzog"@en.
dbo:Person skos:definition "People, including fictional"@en ;
skos:prefLabel "person"@en .
skos:broader .
"""
```
Provide the source text
```python
SRC_TEXT: str = """
Werner Herzog is a remarkable filmmaker and an intellectual originally from Germany, the son of Dietrich Herzog.
After the war, Werner fled to America to become famous.
"""
```
set up the statistical stack profiling
```python
profiler: Profiler = Profiler()
profiler.start()
```
set up the `TextGraphs` pipeline
```python
tg: textgraphs.TextGraphs = textgraphs.TextGraphs(
factory = textgraphs.PipelineFactory(
kg = textgraphs.KGWikiMedia(
spotlight_api = textgraphs.DBPEDIA_SPOTLIGHT_API,
dbpedia_search_api = textgraphs.DBPEDIA_SEARCH_API,
dbpedia_sparql_api = textgraphs.DBPEDIA_SPARQL_API,
wikidata_api = textgraphs.WIKIDATA_API,
min_alias = textgraphs.DBPEDIA_MIN_ALIAS,
min_similarity = textgraphs.DBPEDIA_MIN_SIM,
),
),
)
```
load the bootstrap definitions
```python
tg.load_bootstrap_ttl(
TTL_STR,
debug = False,
)
```
parse the input text
```python
pipe: textgraphs.Pipeline = tg.create_pipeline(
SRC_TEXT.strip(),
)
tg.collect_graph_elements(
pipe,
debug = False,
)
tg.construct_lemma_graph(
debug = False,
)
```
## visualize the lemma graph
```python
render: textgraphs.RenderPyVis = tg.create_render()
pv_graph: pyvis.network.Network = render.render_lemma_graph(
debug = False,
)
```
initialize the layout parameters
```python
pv_graph.force_atlas_2based(
gravity = -38,
central_gravity = 0.01,
spring_length = 231,
spring_strength = 0.7,
damping = 0.8,
overlap = 0,
)
pv_graph.show_buttons(filter_ = [ "physics" ])
pv_graph.toggle_physics(True)
```
```python
pv_graph.prep_notebook()
pv_graph.show("tmp.fig04.html")
```
tmp.fig04.html
![png](ex2_0_files/tmp.fig04.png)
Notice how the `Werner` and `Werner Herzog` nodes are now linked? This synonym from the bootstrap definitions above provided means to link more portions of the _lemma graph_ than the demo in `ex0_0` with the same input text.
## statistical stack profile instrumentation
```python
profiler.stop()
```
```python
profiler.print()
```
_ ._ __/__ _ _ _ _ _/_ Recorded: 17:35:59 Samples: 2846
/_//_/// /_\ / //_// / //_'/ // Duration: 4.111 CPU time: 3.294
/ _/ v4.6.1
Program: /Users/paco/src/textgraphs/venv/lib/python3.10/site-packages/ipykernel_launcher.py -f /Users/paco/Library/Jupyter/runtime/kernel-4365d4ba-2d4d-4d4b-83e2-eb5ef8abfe26.json
4.111 IPythonKernel.dispatch_shell ipykernel/kernelbase.py:378
└─ 4.075 IPythonKernel.execute_request ipykernel/kernelbase.py:721
[9 frames hidden] ipykernel, IPython
3.995 ZMQInteractiveShell.run_ast_nodes IPython/core/interactiveshell.py:3394
├─ 3.250 ../ipykernel_4433/1372904243.py:1
│ └─ 3.248 PipelineFactory.__init__ textgraphs/pipe.py:434
│ └─ 3.232 load spacy/__init__.py:27
│ [98 frames hidden] spacy, en_core_web_sm, catalogue, imp...
│ 0.496 tokenizer_factory spacy/language.py:110
│ └─ 0.108 _validate_special_case spacy/tokenizer.pyx:573
│ 0.439 spacy/language.py:2170
│ └─ 0.085 _validate_special_case spacy/tokenizer.pyx:573
├─ 0.672 ../ipykernel_4433/3257668275.py:1
│ └─ 0.669 TextGraphs.create_pipeline textgraphs/doc.py:103
│ └─ 0.669 PipelineFactory.create_pipeline textgraphs/pipe.py:508
│ └─ 0.669 Pipeline.__init__ textgraphs/pipe.py:216
│ └─ 0.669 English.__call__ spacy/language.py:1016
│ [31 frames hidden] spacy, spacy_dbpedia_spotlight, reque...
└─ 0.055 ../ipykernel_4433/72966960.py:1
└─ 0.046 Network.prep_notebook pyvis/network.py:552
[5 frames hidden] pyvis, jinja2
## outro
_\[ more parts are in progress, getting added to this demo \]_