#import gradio as gr import tempfile from pydub import AudioSegment from transformers import pipeline from pyannote.audio import Pipeline # Load models dynamically def load_models(model_size): if model_size == "transcriber": model_name = "clinifyemr/yoruba-model-finetuned" transcriber = pipeline("automatic-speech-recognition", model=model_name) return transcriber else: raise ValueError("Model size not supported in this application.") # Process the audio file def process_audio(file, num_speakers, model_size): audio_file = AudioSegment.from_file(file.name) transcriber = load_models(model_size) # Temporary file setup temp_path = tempfile.mktemp(suffix=".wav") audio_file.export(temp_path, format="wav") # Load diarization pipeline diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token="HF_TOKEN") diarization = diarization_pipeline(temp_path, min_speakers=num_speakers, max_speakers=5) # Transcribe each segment def transcribe_segment(start, end): segment_audio = audio_file[start * 1000:end * 1000] # pydub works in milliseconds segment_path = tempfile.mktemp(suffix=".wav") segment_audio.export(segment_path, format="wav") transcription = transcriber(segment_path) os.remove(segment_path) return transcription['text'] transcripts = [] for segment, _, speaker in diarization.itertracks(yield_label=True): transcription_text = transcribe_segment(segment.start, segment.end) transcripts.append(f"Speaker {speaker}: {transcription_text}") os.remove(temp_path) # Clean up the temporary file return "\n".join(transcripts) # Gradio interface setup iface = gr.Interface( fn=process_audio, inputs=[ #gr.components.Audio(label="Upload your audio file", type="file"), gr.components.Audio(label="Upload your audio file"), gr.components.Dropdown(choices=[1,2,3,4], label="Number of Speakers"), gr.components.Dropdown(choices=['transcriber'], label="Model Selection") # Assuming only 'transcriber' is relevant here ], outputs=gr.Textbox(label="Transcription"), title="Audio Transcription and Speaker Diarization", description="Upload your audio file to transcribe and analyze speaker diarization." ) if __name__ == "__main__": iface.launch()