import sys import datetime import json import os import torch script_dir = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(script_dir, '..')) from datasets.vqa_dataset import docVQADataset, docVQATESTDataset, textVQADataset print(torch.__version__) import numpy as np from eval_utils.getargs import parse_args from eval_utils.vqa_evaluate import * def get_model(args): if args.model_name == '': raise Exception('Model name cannot be empty str!') from models.MiniCPM.minicpmv import MiniCPM_V, MiniCPM_V_2_6 model_path = args.model_path ckpt = args.ckpt if args.model_name == 'minicpmv': model = MiniCPM_V(model_path=model_path, ckpt=ckpt, device=args.device) elif args.model_name == 'minicpmv26': model = MiniCPM_V_2_6(model_path=model_path, ckpt=ckpt, device=args.device) else: raise Exception(f"Unexpected Moedel Name {args.model_name}!") return model def main(args): np.random.seed(0) max_sample_num = None torch.distributed.init_process_group( backend='nccl', world_size=int(os.getenv('WORLD_SIZE', '1')), rank=int(os.getenv('RANK', '0')), ) torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0))) print(f'Init Rank-{torch.distributed.get_rank()}') if torch.distributed.is_initialized(): args.device = torch.device(f"cuda:{torch.cuda.current_device()}") model = get_model(args) result = {} time = datetime.datetime.now().strftime("%Y%m%d%H%M%S") if args.eval_textVQA or args.eval_all: dataset = textVQADataset(args.textVQA_image_dir, args.textVQA_ann_path) if max_sample_num is not None: dataset = torch.utils.data.Subset(dataset, range(max_sample_num)) acc = evaluate_VQA(model, dataset, args.model_name, 'textVQA', time, \ batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path) result['textVQA'] = acc if args.eval_docVQA or args.eval_all: dataset = docVQADataset(args.docVQA_image_dir, args.docVQA_ann_path) if max_sample_num is not None: dataset = torch.utils.data.Subset(dataset, range(max_sample_num)) acc = evaluate_VQA(model, dataset, args.model_name, 'docVQA', time, batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path) result['docVQA'] = acc if args.eval_docVQATest or args.eval_all: target_dataset = "docVQATest" dataset = docVQATESTDataset(args.docVQATest_image_dir, args.docVQATest_ann_path) if max_sample_num is not None: dataset = torch.utils.data.Subset(dataset, range(max_sample_num)) acc = evaluate_VQA(model, dataset, args.model_name, target_dataset, time, batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path) result['docVQATest'] = acc if torch.distributed.is_initialized(): torch.distributed.barrier() if torch.distributed.is_initialized() and torch.distributed.get_rank() != 0: return None result_path = os.path.join(os.path.join(args.answer_path, args.model_name), 'result.json') output_flag = False for k, v in result.items(): if v > 0.0: output_flag = True break if output_flag: with open(result_path, "w") as f: f.write(json.dumps(result, indent=4)) if __name__ == "__main__": args = parse_args() main(args)