Spaces:
Runtime error
Runtime error
| """ | |
| This script ports models from VQ-diffusion (https://github.com/microsoft/VQ-Diffusion) to diffusers. | |
| It currently only supports porting the ITHQ dataset. | |
| ITHQ dataset: | |
| ```sh | |
| # From the root directory of diffusers. | |
| # Download the VQVAE checkpoint | |
| $ wget https://facevcstandard.blob.core.windows.net/v-zhictang/Improved-VQ-Diffusion_model_release/ithq_vqvae.pth?sv=2020-10-02&st=2022-05-30T15%3A17%3A18Z&se=2030-05-31T15%3A17%3A00Z&sr=b&sp=r&sig=1jVavHFPpUjDs%2FTO1V3PTezaNbPp2Nx8MxiWI7y6fEY%3D -O ithq_vqvae.pth | |
| # Download the VQVAE config | |
| # NOTE that in VQ-diffusion the documented file is `configs/ithq.yaml` but the target class | |
| # `image_synthesis.modeling.codecs.image_codec.ema_vqvae.PatchVQVAE` | |
| # loads `OUTPUT/pretrained_model/taming_dvae/config.yaml` | |
| $ wget https://raw.githubusercontent.com/microsoft/VQ-Diffusion/main/OUTPUT/pretrained_model/taming_dvae/config.yaml -O ithq_vqvae.yaml | |
| # Download the main model checkpoint | |
| $ wget https://facevcstandard.blob.core.windows.net/v-zhictang/Improved-VQ-Diffusion_model_release/ithq_learnable.pth?sv=2020-10-02&st=2022-05-30T10%3A22%3A06Z&se=2030-05-31T10%3A22%3A00Z&sr=b&sp=r&sig=GOE%2Bza02%2FPnGxYVOOPtwrTR4RA3%2F5NVgMxdW4kjaEZ8%3D -O ithq_learnable.pth | |
| # Download the main model config | |
| $ wget https://raw.githubusercontent.com/microsoft/VQ-Diffusion/main/configs/ithq.yaml -O ithq.yaml | |
| # run the convert script | |
| $ python ./scripts/convert_vq_diffusion_to_diffusers.py \ | |
| --checkpoint_path ./ithq_learnable.pth \ | |
| --original_config_file ./ithq.yaml \ | |
| --vqvae_checkpoint_path ./ithq_vqvae.pth \ | |
| --vqvae_original_config_file ./ithq_vqvae.yaml \ | |
| --dump_path <path to save pre-trained `VQDiffusionPipeline`> | |
| ``` | |
| """ | |
| import argparse | |
| import tempfile | |
| import torch | |
| import yaml | |
| from accelerate import init_empty_weights, load_checkpoint_and_dispatch | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| from yaml.loader import FullLoader | |
| from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel | |
| from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings | |
| try: | |
| from omegaconf import OmegaConf | |
| except ImportError: | |
| raise ImportError( | |
| "OmegaConf is required to convert the VQ Diffusion checkpoints. Please install it with `pip install" | |
| " OmegaConf`." | |
| ) | |
| # vqvae model | |
| PORTED_VQVAES = ["image_synthesis.modeling.codecs.image_codec.patch_vqgan.PatchVQGAN"] | |
| def vqvae_model_from_original_config(original_config): | |
| assert original_config.target in PORTED_VQVAES, f"{original_config.target} has not yet been ported to diffusers." | |
| original_config = original_config.params | |
| original_encoder_config = original_config.encoder_config.params | |
| original_decoder_config = original_config.decoder_config.params | |
| in_channels = original_encoder_config.in_channels | |
| out_channels = original_decoder_config.out_ch | |
| down_block_types = get_down_block_types(original_encoder_config) | |
| up_block_types = get_up_block_types(original_decoder_config) | |
| assert original_encoder_config.ch == original_decoder_config.ch | |
| assert original_encoder_config.ch_mult == original_decoder_config.ch_mult | |
| block_out_channels = tuple( | |
| [original_encoder_config.ch * a_ch_mult for a_ch_mult in original_encoder_config.ch_mult] | |
| ) | |
| assert original_encoder_config.num_res_blocks == original_decoder_config.num_res_blocks | |
| layers_per_block = original_encoder_config.num_res_blocks | |
| assert original_encoder_config.z_channels == original_decoder_config.z_channels | |
| latent_channels = original_encoder_config.z_channels | |
| num_vq_embeddings = original_config.n_embed | |
| # Hard coded value for ResnetBlock.GoupNorm(num_groups) in VQ-diffusion | |
| norm_num_groups = 32 | |
| e_dim = original_config.embed_dim | |
| model = VQModel( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| down_block_types=down_block_types, | |
| up_block_types=up_block_types, | |
| block_out_channels=block_out_channels, | |
| layers_per_block=layers_per_block, | |
| latent_channels=latent_channels, | |
| num_vq_embeddings=num_vq_embeddings, | |
| norm_num_groups=norm_num_groups, | |
| vq_embed_dim=e_dim, | |
| ) | |
| return model | |
| def get_down_block_types(original_encoder_config): | |
| attn_resolutions = coerce_attn_resolutions(original_encoder_config.attn_resolutions) | |
| num_resolutions = len(original_encoder_config.ch_mult) | |
| resolution = coerce_resolution(original_encoder_config.resolution) | |
| curr_res = resolution | |
| down_block_types = [] | |
| for _ in range(num_resolutions): | |
| if curr_res in attn_resolutions: | |
| down_block_type = "AttnDownEncoderBlock2D" | |
| else: | |
| down_block_type = "DownEncoderBlock2D" | |
| down_block_types.append(down_block_type) | |
| curr_res = [r // 2 for r in curr_res] | |
| return down_block_types | |
| def get_up_block_types(original_decoder_config): | |
| attn_resolutions = coerce_attn_resolutions(original_decoder_config.attn_resolutions) | |
| num_resolutions = len(original_decoder_config.ch_mult) | |
| resolution = coerce_resolution(original_decoder_config.resolution) | |
| curr_res = [r // 2 ** (num_resolutions - 1) for r in resolution] | |
| up_block_types = [] | |
| for _ in reversed(range(num_resolutions)): | |
| if curr_res in attn_resolutions: | |
| up_block_type = "AttnUpDecoderBlock2D" | |
| else: | |
| up_block_type = "UpDecoderBlock2D" | |
| up_block_types.append(up_block_type) | |
| curr_res = [r * 2 for r in curr_res] | |
| return up_block_types | |
| def coerce_attn_resolutions(attn_resolutions): | |
| attn_resolutions = OmegaConf.to_object(attn_resolutions) | |
| attn_resolutions_ = [] | |
| for ar in attn_resolutions: | |
| if isinstance(ar, (list, tuple)): | |
| attn_resolutions_.append(list(ar)) | |
| else: | |
| attn_resolutions_.append([ar, ar]) | |
| return attn_resolutions_ | |
| def coerce_resolution(resolution): | |
| resolution = OmegaConf.to_object(resolution) | |
| if isinstance(resolution, int): | |
| resolution = [resolution, resolution] # H, W | |
| elif isinstance(resolution, (tuple, list)): | |
| resolution = list(resolution) | |
| else: | |
| raise ValueError("Unknown type of resolution:", resolution) | |
| return resolution | |
| # done vqvae model | |
| # vqvae checkpoint | |
| def vqvae_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): | |
| diffusers_checkpoint = {} | |
| diffusers_checkpoint.update(vqvae_encoder_to_diffusers_checkpoint(model, checkpoint)) | |
| # quant_conv | |
| diffusers_checkpoint.update( | |
| { | |
| "quant_conv.weight": checkpoint["quant_conv.weight"], | |
| "quant_conv.bias": checkpoint["quant_conv.bias"], | |
| } | |
| ) | |
| # quantize | |
| diffusers_checkpoint.update({"quantize.embedding.weight": checkpoint["quantize.embedding"]}) | |
| # post_quant_conv | |
| diffusers_checkpoint.update( | |
| { | |
| "post_quant_conv.weight": checkpoint["post_quant_conv.weight"], | |
| "post_quant_conv.bias": checkpoint["post_quant_conv.bias"], | |
| } | |
| ) | |
| # decoder | |
| diffusers_checkpoint.update(vqvae_decoder_to_diffusers_checkpoint(model, checkpoint)) | |
| return diffusers_checkpoint | |
| def vqvae_encoder_to_diffusers_checkpoint(model, checkpoint): | |
| diffusers_checkpoint = {} | |
| # conv_in | |
| diffusers_checkpoint.update( | |
| { | |
| "encoder.conv_in.weight": checkpoint["encoder.conv_in.weight"], | |
| "encoder.conv_in.bias": checkpoint["encoder.conv_in.bias"], | |
| } | |
| ) | |
| # down_blocks | |
| for down_block_idx, down_block in enumerate(model.encoder.down_blocks): | |
| diffusers_down_block_prefix = f"encoder.down_blocks.{down_block_idx}" | |
| down_block_prefix = f"encoder.down.{down_block_idx}" | |
| # resnets | |
| for resnet_idx, resnet in enumerate(down_block.resnets): | |
| diffusers_resnet_prefix = f"{diffusers_down_block_prefix}.resnets.{resnet_idx}" | |
| resnet_prefix = f"{down_block_prefix}.block.{resnet_idx}" | |
| diffusers_checkpoint.update( | |
| vqvae_resnet_to_diffusers_checkpoint( | |
| resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix | |
| ) | |
| ) | |
| # downsample | |
| # do not include the downsample when on the last down block | |
| # There is no downsample on the last down block | |
| if down_block_idx != len(model.encoder.down_blocks) - 1: | |
| # There's a single downsample in the original checkpoint but a list of downsamples | |
| # in the diffusers model. | |
| diffusers_downsample_prefix = f"{diffusers_down_block_prefix}.downsamplers.0.conv" | |
| downsample_prefix = f"{down_block_prefix}.downsample.conv" | |
| diffusers_checkpoint.update( | |
| { | |
| f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"], | |
| f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"], | |
| } | |
| ) | |
| # attentions | |
| if hasattr(down_block, "attentions"): | |
| for attention_idx, _ in enumerate(down_block.attentions): | |
| diffusers_attention_prefix = f"{diffusers_down_block_prefix}.attentions.{attention_idx}" | |
| attention_prefix = f"{down_block_prefix}.attn.{attention_idx}" | |
| diffusers_checkpoint.update( | |
| vqvae_attention_to_diffusers_checkpoint( | |
| checkpoint, | |
| diffusers_attention_prefix=diffusers_attention_prefix, | |
| attention_prefix=attention_prefix, | |
| ) | |
| ) | |
| # mid block | |
| # mid block attentions | |
| # There is a single hardcoded attention block in the middle of the VQ-diffusion encoder | |
| diffusers_attention_prefix = "encoder.mid_block.attentions.0" | |
| attention_prefix = "encoder.mid.attn_1" | |
| diffusers_checkpoint.update( | |
| vqvae_attention_to_diffusers_checkpoint( | |
| checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix | |
| ) | |
| ) | |
| # mid block resnets | |
| for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets): | |
| diffusers_resnet_prefix = f"encoder.mid_block.resnets.{diffusers_resnet_idx}" | |
| # the hardcoded prefixes to `block_` are 1 and 2 | |
| orig_resnet_idx = diffusers_resnet_idx + 1 | |
| # There are two hardcoded resnets in the middle of the VQ-diffusion encoder | |
| resnet_prefix = f"encoder.mid.block_{orig_resnet_idx}" | |
| diffusers_checkpoint.update( | |
| vqvae_resnet_to_diffusers_checkpoint( | |
| resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix | |
| ) | |
| ) | |
| diffusers_checkpoint.update( | |
| { | |
| # conv_norm_out | |
| "encoder.conv_norm_out.weight": checkpoint["encoder.norm_out.weight"], | |
| "encoder.conv_norm_out.bias": checkpoint["encoder.norm_out.bias"], | |
| # conv_out | |
| "encoder.conv_out.weight": checkpoint["encoder.conv_out.weight"], | |
| "encoder.conv_out.bias": checkpoint["encoder.conv_out.bias"], | |
| } | |
| ) | |
| return diffusers_checkpoint | |
| def vqvae_decoder_to_diffusers_checkpoint(model, checkpoint): | |
| diffusers_checkpoint = {} | |
| # conv in | |
| diffusers_checkpoint.update( | |
| { | |
| "decoder.conv_in.weight": checkpoint["decoder.conv_in.weight"], | |
| "decoder.conv_in.bias": checkpoint["decoder.conv_in.bias"], | |
| } | |
| ) | |
| # up_blocks | |
| for diffusers_up_block_idx, up_block in enumerate(model.decoder.up_blocks): | |
| # up_blocks are stored in reverse order in the VQ-diffusion checkpoint | |
| orig_up_block_idx = len(model.decoder.up_blocks) - 1 - diffusers_up_block_idx | |
| diffusers_up_block_prefix = f"decoder.up_blocks.{diffusers_up_block_idx}" | |
| up_block_prefix = f"decoder.up.{orig_up_block_idx}" | |
| # resnets | |
| for resnet_idx, resnet in enumerate(up_block.resnets): | |
| diffusers_resnet_prefix = f"{diffusers_up_block_prefix}.resnets.{resnet_idx}" | |
| resnet_prefix = f"{up_block_prefix}.block.{resnet_idx}" | |
| diffusers_checkpoint.update( | |
| vqvae_resnet_to_diffusers_checkpoint( | |
| resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix | |
| ) | |
| ) | |
| # upsample | |
| # there is no up sample on the last up block | |
| if diffusers_up_block_idx != len(model.decoder.up_blocks) - 1: | |
| # There's a single upsample in the VQ-diffusion checkpoint but a list of downsamples | |
| # in the diffusers model. | |
| diffusers_downsample_prefix = f"{diffusers_up_block_prefix}.upsamplers.0.conv" | |
| downsample_prefix = f"{up_block_prefix}.upsample.conv" | |
| diffusers_checkpoint.update( | |
| { | |
| f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"], | |
| f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"], | |
| } | |
| ) | |
| # attentions | |
| if hasattr(up_block, "attentions"): | |
| for attention_idx, _ in enumerate(up_block.attentions): | |
| diffusers_attention_prefix = f"{diffusers_up_block_prefix}.attentions.{attention_idx}" | |
| attention_prefix = f"{up_block_prefix}.attn.{attention_idx}" | |
| diffusers_checkpoint.update( | |
| vqvae_attention_to_diffusers_checkpoint( | |
| checkpoint, | |
| diffusers_attention_prefix=diffusers_attention_prefix, | |
| attention_prefix=attention_prefix, | |
| ) | |
| ) | |
| # mid block | |
| # mid block attentions | |
| # There is a single hardcoded attention block in the middle of the VQ-diffusion decoder | |
| diffusers_attention_prefix = "decoder.mid_block.attentions.0" | |
| attention_prefix = "decoder.mid.attn_1" | |
| diffusers_checkpoint.update( | |
| vqvae_attention_to_diffusers_checkpoint( | |
| checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix | |
| ) | |
| ) | |
| # mid block resnets | |
| for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets): | |
| diffusers_resnet_prefix = f"decoder.mid_block.resnets.{diffusers_resnet_idx}" | |
| # the hardcoded prefixes to `block_` are 1 and 2 | |
| orig_resnet_idx = diffusers_resnet_idx + 1 | |
| # There are two hardcoded resnets in the middle of the VQ-diffusion decoder | |
| resnet_prefix = f"decoder.mid.block_{orig_resnet_idx}" | |
| diffusers_checkpoint.update( | |
| vqvae_resnet_to_diffusers_checkpoint( | |
| resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix | |
| ) | |
| ) | |
| diffusers_checkpoint.update( | |
| { | |
| # conv_norm_out | |
| "decoder.conv_norm_out.weight": checkpoint["decoder.norm_out.weight"], | |
| "decoder.conv_norm_out.bias": checkpoint["decoder.norm_out.bias"], | |
| # conv_out | |
| "decoder.conv_out.weight": checkpoint["decoder.conv_out.weight"], | |
| "decoder.conv_out.bias": checkpoint["decoder.conv_out.bias"], | |
| } | |
| ) | |
| return diffusers_checkpoint | |
| def vqvae_resnet_to_diffusers_checkpoint(resnet, checkpoint, *, diffusers_resnet_prefix, resnet_prefix): | |
| rv = { | |
| # norm1 | |
| f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.norm1.weight"], | |
| f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.norm1.bias"], | |
| # conv1 | |
| f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.conv1.weight"], | |
| f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.conv1.bias"], | |
| # norm2 | |
| f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.norm2.weight"], | |
| f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.norm2.bias"], | |
| # conv2 | |
| f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.conv2.weight"], | |
| f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.conv2.bias"], | |
| } | |
| if resnet.conv_shortcut is not None: | |
| rv.update( | |
| { | |
| f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{resnet_prefix}.nin_shortcut.weight"], | |
| f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{resnet_prefix}.nin_shortcut.bias"], | |
| } | |
| ) | |
| return rv | |
| def vqvae_attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix): | |
| return { | |
| # group_norm | |
| f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"], | |
| f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"], | |
| # query | |
| f"{diffusers_attention_prefix}.query.weight": checkpoint[f"{attention_prefix}.q.weight"][:, :, 0, 0], | |
| f"{diffusers_attention_prefix}.query.bias": checkpoint[f"{attention_prefix}.q.bias"], | |
| # key | |
| f"{diffusers_attention_prefix}.key.weight": checkpoint[f"{attention_prefix}.k.weight"][:, :, 0, 0], | |
| f"{diffusers_attention_prefix}.key.bias": checkpoint[f"{attention_prefix}.k.bias"], | |
| # value | |
| f"{diffusers_attention_prefix}.value.weight": checkpoint[f"{attention_prefix}.v.weight"][:, :, 0, 0], | |
| f"{diffusers_attention_prefix}.value.bias": checkpoint[f"{attention_prefix}.v.bias"], | |
| # proj_attn | |
| f"{diffusers_attention_prefix}.proj_attn.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][ | |
| :, :, 0, 0 | |
| ], | |
| f"{diffusers_attention_prefix}.proj_attn.bias": checkpoint[f"{attention_prefix}.proj_out.bias"], | |
| } | |
| # done vqvae checkpoint | |
| # transformer model | |
| PORTED_DIFFUSIONS = ["image_synthesis.modeling.transformers.diffusion_transformer.DiffusionTransformer"] | |
| PORTED_TRANSFORMERS = ["image_synthesis.modeling.transformers.transformer_utils.Text2ImageTransformer"] | |
| PORTED_CONTENT_EMBEDDINGS = ["image_synthesis.modeling.embeddings.dalle_mask_image_embedding.DalleMaskImageEmbedding"] | |
| def transformer_model_from_original_config( | |
| original_diffusion_config, original_transformer_config, original_content_embedding_config | |
| ): | |
| assert ( | |
| original_diffusion_config.target in PORTED_DIFFUSIONS | |
| ), f"{original_diffusion_config.target} has not yet been ported to diffusers." | |
| assert ( | |
| original_transformer_config.target in PORTED_TRANSFORMERS | |
| ), f"{original_transformer_config.target} has not yet been ported to diffusers." | |
| assert ( | |
| original_content_embedding_config.target in PORTED_CONTENT_EMBEDDINGS | |
| ), f"{original_content_embedding_config.target} has not yet been ported to diffusers." | |
| original_diffusion_config = original_diffusion_config.params | |
| original_transformer_config = original_transformer_config.params | |
| original_content_embedding_config = original_content_embedding_config.params | |
| inner_dim = original_transformer_config["n_embd"] | |
| n_heads = original_transformer_config["n_head"] | |
| # VQ-Diffusion gives dimension of the multi-headed attention layers as the | |
| # number of attention heads times the sequence length (the dimension) of a | |
| # single head. We want to specify our attention blocks with those values | |
| # specified separately | |
| assert inner_dim % n_heads == 0 | |
| d_head = inner_dim // n_heads | |
| depth = original_transformer_config["n_layer"] | |
| context_dim = original_transformer_config["condition_dim"] | |
| num_embed = original_content_embedding_config["num_embed"] | |
| # the number of embeddings in the transformer includes the mask embedding. | |
| # the content embedding (the vqvae) does not include the mask embedding. | |
| num_embed = num_embed + 1 | |
| height = original_transformer_config["content_spatial_size"][0] | |
| width = original_transformer_config["content_spatial_size"][1] | |
| assert width == height, "width has to be equal to height" | |
| dropout = original_transformer_config["resid_pdrop"] | |
| num_embeds_ada_norm = original_diffusion_config["diffusion_step"] | |
| model_kwargs = { | |
| "attention_bias": True, | |
| "cross_attention_dim": context_dim, | |
| "attention_head_dim": d_head, | |
| "num_layers": depth, | |
| "dropout": dropout, | |
| "num_attention_heads": n_heads, | |
| "num_vector_embeds": num_embed, | |
| "num_embeds_ada_norm": num_embeds_ada_norm, | |
| "norm_num_groups": 32, | |
| "sample_size": width, | |
| "activation_fn": "geglu-approximate", | |
| } | |
| model = Transformer2DModel(**model_kwargs) | |
| return model | |
| # done transformer model | |
| # transformer checkpoint | |
| def transformer_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): | |
| diffusers_checkpoint = {} | |
| transformer_prefix = "transformer.transformer" | |
| diffusers_latent_image_embedding_prefix = "latent_image_embedding" | |
| latent_image_embedding_prefix = f"{transformer_prefix}.content_emb" | |
| # DalleMaskImageEmbedding | |
| diffusers_checkpoint.update( | |
| { | |
| f"{diffusers_latent_image_embedding_prefix}.emb.weight": checkpoint[ | |
| f"{latent_image_embedding_prefix}.emb.weight" | |
| ], | |
| f"{diffusers_latent_image_embedding_prefix}.height_emb.weight": checkpoint[ | |
| f"{latent_image_embedding_prefix}.height_emb.weight" | |
| ], | |
| f"{diffusers_latent_image_embedding_prefix}.width_emb.weight": checkpoint[ | |
| f"{latent_image_embedding_prefix}.width_emb.weight" | |
| ], | |
| } | |
| ) | |
| # transformer blocks | |
| for transformer_block_idx, transformer_block in enumerate(model.transformer_blocks): | |
| diffusers_transformer_block_prefix = f"transformer_blocks.{transformer_block_idx}" | |
| transformer_block_prefix = f"{transformer_prefix}.blocks.{transformer_block_idx}" | |
| # ada norm block | |
| diffusers_ada_norm_prefix = f"{diffusers_transformer_block_prefix}.norm1" | |
| ada_norm_prefix = f"{transformer_block_prefix}.ln1" | |
| diffusers_checkpoint.update( | |
| transformer_ada_norm_to_diffusers_checkpoint( | |
| checkpoint, diffusers_ada_norm_prefix=diffusers_ada_norm_prefix, ada_norm_prefix=ada_norm_prefix | |
| ) | |
| ) | |
| # attention block | |
| diffusers_attention_prefix = f"{diffusers_transformer_block_prefix}.attn1" | |
| attention_prefix = f"{transformer_block_prefix}.attn1" | |
| diffusers_checkpoint.update( | |
| transformer_attention_to_diffusers_checkpoint( | |
| checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix | |
| ) | |
| ) | |
| # ada norm block | |
| diffusers_ada_norm_prefix = f"{diffusers_transformer_block_prefix}.norm2" | |
| ada_norm_prefix = f"{transformer_block_prefix}.ln1_1" | |
| diffusers_checkpoint.update( | |
| transformer_ada_norm_to_diffusers_checkpoint( | |
| checkpoint, diffusers_ada_norm_prefix=diffusers_ada_norm_prefix, ada_norm_prefix=ada_norm_prefix | |
| ) | |
| ) | |
| # attention block | |
| diffusers_attention_prefix = f"{diffusers_transformer_block_prefix}.attn2" | |
| attention_prefix = f"{transformer_block_prefix}.attn2" | |
| diffusers_checkpoint.update( | |
| transformer_attention_to_diffusers_checkpoint( | |
| checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix | |
| ) | |
| ) | |
| # norm block | |
| diffusers_norm_block_prefix = f"{diffusers_transformer_block_prefix}.norm3" | |
| norm_block_prefix = f"{transformer_block_prefix}.ln2" | |
| diffusers_checkpoint.update( | |
| { | |
| f"{diffusers_norm_block_prefix}.weight": checkpoint[f"{norm_block_prefix}.weight"], | |
| f"{diffusers_norm_block_prefix}.bias": checkpoint[f"{norm_block_prefix}.bias"], | |
| } | |
| ) | |
| # feedforward block | |
| diffusers_feedforward_prefix = f"{diffusers_transformer_block_prefix}.ff" | |
| feedforward_prefix = f"{transformer_block_prefix}.mlp" | |
| diffusers_checkpoint.update( | |
| transformer_feedforward_to_diffusers_checkpoint( | |
| checkpoint, | |
| diffusers_feedforward_prefix=diffusers_feedforward_prefix, | |
| feedforward_prefix=feedforward_prefix, | |
| ) | |
| ) | |
| # to logits | |
| diffusers_norm_out_prefix = "norm_out" | |
| norm_out_prefix = f"{transformer_prefix}.to_logits.0" | |
| diffusers_checkpoint.update( | |
| { | |
| f"{diffusers_norm_out_prefix}.weight": checkpoint[f"{norm_out_prefix}.weight"], | |
| f"{diffusers_norm_out_prefix}.bias": checkpoint[f"{norm_out_prefix}.bias"], | |
| } | |
| ) | |
| diffusers_out_prefix = "out" | |
| out_prefix = f"{transformer_prefix}.to_logits.1" | |
| diffusers_checkpoint.update( | |
| { | |
| f"{diffusers_out_prefix}.weight": checkpoint[f"{out_prefix}.weight"], | |
| f"{diffusers_out_prefix}.bias": checkpoint[f"{out_prefix}.bias"], | |
| } | |
| ) | |
| return diffusers_checkpoint | |
| def transformer_ada_norm_to_diffusers_checkpoint(checkpoint, *, diffusers_ada_norm_prefix, ada_norm_prefix): | |
| return { | |
| f"{diffusers_ada_norm_prefix}.emb.weight": checkpoint[f"{ada_norm_prefix}.emb.weight"], | |
| f"{diffusers_ada_norm_prefix}.linear.weight": checkpoint[f"{ada_norm_prefix}.linear.weight"], | |
| f"{diffusers_ada_norm_prefix}.linear.bias": checkpoint[f"{ada_norm_prefix}.linear.bias"], | |
| } | |
| def transformer_attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix): | |
| return { | |
| # key | |
| f"{diffusers_attention_prefix}.to_k.weight": checkpoint[f"{attention_prefix}.key.weight"], | |
| f"{diffusers_attention_prefix}.to_k.bias": checkpoint[f"{attention_prefix}.key.bias"], | |
| # query | |
| f"{diffusers_attention_prefix}.to_q.weight": checkpoint[f"{attention_prefix}.query.weight"], | |
| f"{diffusers_attention_prefix}.to_q.bias": checkpoint[f"{attention_prefix}.query.bias"], | |
| # value | |
| f"{diffusers_attention_prefix}.to_v.weight": checkpoint[f"{attention_prefix}.value.weight"], | |
| f"{diffusers_attention_prefix}.to_v.bias": checkpoint[f"{attention_prefix}.value.bias"], | |
| # linear out | |
| f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj.weight"], | |
| f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj.bias"], | |
| } | |
| def transformer_feedforward_to_diffusers_checkpoint(checkpoint, *, diffusers_feedforward_prefix, feedforward_prefix): | |
| return { | |
| f"{diffusers_feedforward_prefix}.net.0.proj.weight": checkpoint[f"{feedforward_prefix}.0.weight"], | |
| f"{diffusers_feedforward_prefix}.net.0.proj.bias": checkpoint[f"{feedforward_prefix}.0.bias"], | |
| f"{diffusers_feedforward_prefix}.net.2.weight": checkpoint[f"{feedforward_prefix}.2.weight"], | |
| f"{diffusers_feedforward_prefix}.net.2.bias": checkpoint[f"{feedforward_prefix}.2.bias"], | |
| } | |
| # done transformer checkpoint | |
| def read_config_file(filename): | |
| # The yaml file contains annotations that certain values should | |
| # loaded as tuples. By default, OmegaConf will panic when reading | |
| # these. Instead, we can manually read the yaml with the FullLoader and then | |
| # construct the OmegaConf object. | |
| with open(filename) as f: | |
| original_config = yaml.load(f, FullLoader) | |
| return OmegaConf.create(original_config) | |
| # We take separate arguments for the vqvae because the ITHQ vqvae config file | |
| # is separate from the config file for the rest of the model. | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--vqvae_checkpoint_path", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="Path to the vqvae checkpoint to convert.", | |
| ) | |
| parser.add_argument( | |
| "--vqvae_original_config_file", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="The YAML config file corresponding to the original architecture for the vqvae.", | |
| ) | |
| parser.add_argument( | |
| "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." | |
| ) | |
| parser.add_argument( | |
| "--original_config_file", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="The YAML config file corresponding to the original architecture.", | |
| ) | |
| parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
| parser.add_argument( | |
| "--checkpoint_load_device", | |
| default="cpu", | |
| type=str, | |
| required=False, | |
| help="The device passed to `map_location` when loading checkpoints.", | |
| ) | |
| # See link for how ema weights are always selected | |
| # https://github.com/microsoft/VQ-Diffusion/blob/3c98e77f721db7c787b76304fa2c96a36c7b00af/inference_VQ_Diffusion.py#L65 | |
| parser.add_argument( | |
| "--no_use_ema", | |
| action="store_true", | |
| required=False, | |
| help=( | |
| "Set to not use the ema weights from the original VQ-Diffusion checkpoint. You probably do not want to set" | |
| " it as the original VQ-Diffusion always uses the ema weights when loading models." | |
| ), | |
| ) | |
| args = parser.parse_args() | |
| use_ema = not args.no_use_ema | |
| print(f"loading checkpoints to {args.checkpoint_load_device}") | |
| checkpoint_map_location = torch.device(args.checkpoint_load_device) | |
| # vqvae_model | |
| print(f"loading vqvae, config: {args.vqvae_original_config_file}, checkpoint: {args.vqvae_checkpoint_path}") | |
| vqvae_original_config = read_config_file(args.vqvae_original_config_file).model | |
| vqvae_checkpoint = torch.load(args.vqvae_checkpoint_path, map_location=checkpoint_map_location)["model"] | |
| with init_empty_weights(): | |
| vqvae_model = vqvae_model_from_original_config(vqvae_original_config) | |
| vqvae_diffusers_checkpoint = vqvae_original_checkpoint_to_diffusers_checkpoint(vqvae_model, vqvae_checkpoint) | |
| with tempfile.NamedTemporaryFile() as vqvae_diffusers_checkpoint_file: | |
| torch.save(vqvae_diffusers_checkpoint, vqvae_diffusers_checkpoint_file.name) | |
| del vqvae_diffusers_checkpoint | |
| del vqvae_checkpoint | |
| load_checkpoint_and_dispatch(vqvae_model, vqvae_diffusers_checkpoint_file.name, device_map="auto") | |
| print("done loading vqvae") | |
| # done vqvae_model | |
| # transformer_model | |
| print( | |
| f"loading transformer, config: {args.original_config_file}, checkpoint: {args.checkpoint_path}, use ema:" | |
| f" {use_ema}" | |
| ) | |
| original_config = read_config_file(args.original_config_file).model | |
| diffusion_config = original_config.params.diffusion_config | |
| transformer_config = original_config.params.diffusion_config.params.transformer_config | |
| content_embedding_config = original_config.params.diffusion_config.params.content_emb_config | |
| pre_checkpoint = torch.load(args.checkpoint_path, map_location=checkpoint_map_location) | |
| if use_ema: | |
| if "ema" in pre_checkpoint: | |
| checkpoint = {} | |
| for k, v in pre_checkpoint["model"].items(): | |
| checkpoint[k] = v | |
| for k, v in pre_checkpoint["ema"].items(): | |
| # The ema weights are only used on the transformer. To mimic their key as if they came | |
| # from the state_dict for the top level model, we prefix with an additional "transformer." | |
| # See the source linked in the args.use_ema config for more information. | |
| checkpoint[f"transformer.{k}"] = v | |
| else: | |
| print("attempted to load ema weights but no ema weights are specified in the loaded checkpoint.") | |
| checkpoint = pre_checkpoint["model"] | |
| else: | |
| checkpoint = pre_checkpoint["model"] | |
| del pre_checkpoint | |
| with init_empty_weights(): | |
| transformer_model = transformer_model_from_original_config( | |
| diffusion_config, transformer_config, content_embedding_config | |
| ) | |
| diffusers_transformer_checkpoint = transformer_original_checkpoint_to_diffusers_checkpoint( | |
| transformer_model, checkpoint | |
| ) | |
| # classifier free sampling embeddings interlude | |
| # The learned embeddings are stored on the transformer in the original VQ-diffusion. We store them on a separate | |
| # model, so we pull them off the checkpoint before the checkpoint is deleted. | |
| learnable_classifier_free_sampling_embeddings = diffusion_config.params.learnable_cf | |
| if learnable_classifier_free_sampling_embeddings: | |
| learned_classifier_free_sampling_embeddings_embeddings = checkpoint["transformer.empty_text_embed"] | |
| else: | |
| learned_classifier_free_sampling_embeddings_embeddings = None | |
| # done classifier free sampling embeddings interlude | |
| with tempfile.NamedTemporaryFile() as diffusers_transformer_checkpoint_file: | |
| torch.save(diffusers_transformer_checkpoint, diffusers_transformer_checkpoint_file.name) | |
| del diffusers_transformer_checkpoint | |
| del checkpoint | |
| load_checkpoint_and_dispatch(transformer_model, diffusers_transformer_checkpoint_file.name, device_map="auto") | |
| print("done loading transformer") | |
| # done transformer_model | |
| # text encoder | |
| print("loading CLIP text encoder") | |
| clip_name = "openai/clip-vit-base-patch32" | |
| # The original VQ-Diffusion specifies the pad value by the int used in the | |
| # returned tokens. Each model uses `0` as the pad value. The transformers clip api | |
| # specifies the pad value via the token before it has been tokenized. The `!` pad | |
| # token is the same as padding with the `0` pad value. | |
| pad_token = "!" | |
| tokenizer_model = CLIPTokenizer.from_pretrained(clip_name, pad_token=pad_token, device_map="auto") | |
| assert tokenizer_model.convert_tokens_to_ids(pad_token) == 0 | |
| text_encoder_model = CLIPTextModel.from_pretrained( | |
| clip_name, | |
| # `CLIPTextModel` does not support device_map="auto" | |
| # device_map="auto" | |
| ) | |
| print("done loading CLIP text encoder") | |
| # done text encoder | |
| # scheduler | |
| scheduler_model = VQDiffusionScheduler( | |
| # the scheduler has the same number of embeddings as the transformer | |
| num_vec_classes=transformer_model.num_vector_embeds | |
| ) | |
| # done scheduler | |
| # learned classifier free sampling embeddings | |
| with init_empty_weights(): | |
| learned_classifier_free_sampling_embeddings_model = LearnedClassifierFreeSamplingEmbeddings( | |
| learnable_classifier_free_sampling_embeddings, | |
| hidden_size=text_encoder_model.config.hidden_size, | |
| length=tokenizer_model.model_max_length, | |
| ) | |
| learned_classifier_free_sampling_checkpoint = { | |
| "embeddings": learned_classifier_free_sampling_embeddings_embeddings.float() | |
| } | |
| with tempfile.NamedTemporaryFile() as learned_classifier_free_sampling_checkpoint_file: | |
| torch.save(learned_classifier_free_sampling_checkpoint, learned_classifier_free_sampling_checkpoint_file.name) | |
| del learned_classifier_free_sampling_checkpoint | |
| del learned_classifier_free_sampling_embeddings_embeddings | |
| load_checkpoint_and_dispatch( | |
| learned_classifier_free_sampling_embeddings_model, | |
| learned_classifier_free_sampling_checkpoint_file.name, | |
| device_map="auto", | |
| ) | |
| # done learned classifier free sampling embeddings | |
| print(f"saving VQ diffusion model, path: {args.dump_path}") | |
| pipe = VQDiffusionPipeline( | |
| vqvae=vqvae_model, | |
| transformer=transformer_model, | |
| tokenizer=tokenizer_model, | |
| text_encoder=text_encoder_model, | |
| learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings_model, | |
| scheduler=scheduler_model, | |
| ) | |
| pipe.save_pretrained(args.dump_path) | |
| print("done writing VQ diffusion model") | |