Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Dict, Optional, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint | |
| from ...configuration_utils import ConfigMixin, register_to_config | |
| from ...models.attention import FeedForward | |
| from ...models.attention_processor import ( | |
| Attention, | |
| AttentionProcessor, | |
| StableAudioAttnProcessor2_0, | |
| ) | |
| from ...models.modeling_utils import ModelMixin | |
| from ...models.transformers.transformer_2d import Transformer2DModelOutput | |
| from ...utils import is_torch_version, logging | |
| from ...utils.torch_utils import maybe_allow_in_graph | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class StableAudioGaussianFourierProjection(nn.Module): | |
| """Gaussian Fourier embeddings for noise levels.""" | |
| # Copied from diffusers.models.embeddings.GaussianFourierProjection.__init__ | |
| def __init__( | |
| self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False | |
| ): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) | |
| self.log = log | |
| self.flip_sin_to_cos = flip_sin_to_cos | |
| if set_W_to_weight: | |
| # to delete later | |
| del self.weight | |
| self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) | |
| self.weight = self.W | |
| del self.W | |
| def forward(self, x): | |
| if self.log: | |
| x = torch.log(x) | |
| x_proj = 2 * np.pi * x[:, None] @ self.weight[None, :] | |
| if self.flip_sin_to_cos: | |
| out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1) | |
| else: | |
| out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) | |
| return out | |
| class StableAudioDiTBlock(nn.Module): | |
| r""" | |
| Transformer block used in Stable Audio model (https://github.com/Stability-AI/stable-audio-tools). Allow skip | |
| connection and QKNorm | |
| Parameters: | |
| dim (`int`): The number of channels in the input and output. | |
| num_attention_heads (`int`): The number of heads to use for the query states. | |
| num_key_value_attention_heads (`int`): The number of heads to use for the key and value states. | |
| attention_head_dim (`int`): The number of channels in each head. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
| upcast_attention (`bool`, *optional*): | |
| Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| num_key_value_attention_heads: int, | |
| attention_head_dim: int, | |
| dropout=0.0, | |
| cross_attention_dim: Optional[int] = None, | |
| upcast_attention: bool = False, | |
| norm_eps: float = 1e-5, | |
| ff_inner_dim: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| # Define 3 blocks. Each block has its own normalization layer. | |
| # 1. Self-Attn | |
| self.norm1 = nn.LayerNorm(dim, elementwise_affine=True, eps=norm_eps) | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=False, | |
| upcast_attention=upcast_attention, | |
| out_bias=False, | |
| processor=StableAudioAttnProcessor2_0(), | |
| ) | |
| # 2. Cross-Attn | |
| self.norm2 = nn.LayerNorm(dim, norm_eps, True) | |
| self.attn2 = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| kv_heads=num_key_value_attention_heads, | |
| dropout=dropout, | |
| bias=False, | |
| upcast_attention=upcast_attention, | |
| out_bias=False, | |
| processor=StableAudioAttnProcessor2_0(), | |
| ) # is self-attn if encoder_hidden_states is none | |
| # 3. Feed-forward | |
| self.norm3 = nn.LayerNorm(dim, norm_eps, True) | |
| self.ff = FeedForward( | |
| dim, | |
| dropout=dropout, | |
| activation_fn="swiglu", | |
| final_dropout=False, | |
| inner_dim=ff_inner_dim, | |
| bias=True, | |
| ) | |
| # let chunk size default to None | |
| self._chunk_size = None | |
| self._chunk_dim = 0 | |
| def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
| # Sets chunk feed-forward | |
| self._chunk_size = chunk_size | |
| self._chunk_dim = dim | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| rotary_embedding: Optional[torch.FloatTensor] = None, | |
| ) -> torch.Tensor: | |
| # Notice that normalization is always applied before the real computation in the following blocks. | |
| # 0. Self-Attention | |
| norm_hidden_states = self.norm1(hidden_states) | |
| attn_output = self.attn1( | |
| norm_hidden_states, | |
| attention_mask=attention_mask, | |
| rotary_emb=rotary_embedding, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # 2. Cross-Attention | |
| norm_hidden_states = self.norm2(hidden_states) | |
| attn_output = self.attn2( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # 3. Feed-forward | |
| norm_hidden_states = self.norm3(hidden_states) | |
| ff_output = self.ff(norm_hidden_states) | |
| hidden_states = ff_output + hidden_states | |
| return hidden_states | |
| class StableAudioDiTModel(ModelMixin, ConfigMixin): | |
| """ | |
| The Diffusion Transformer model introduced in Stable Audio. | |
| Reference: https://github.com/Stability-AI/stable-audio-tools | |
| Parameters: | |
| sample_size ( `int`, *optional*, defaults to 1024): The size of the input sample. | |
| in_channels (`int`, *optional*, defaults to 64): The number of channels in the input. | |
| num_layers (`int`, *optional*, defaults to 24): The number of layers of Transformer blocks to use. | |
| attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. | |
| num_attention_heads (`int`, *optional*, defaults to 24): The number of heads to use for the query states. | |
| num_key_value_attention_heads (`int`, *optional*, defaults to 12): | |
| The number of heads to use for the key and value states. | |
| out_channels (`int`, defaults to 64): Number of output channels. | |
| cross_attention_dim ( `int`, *optional*, defaults to 768): Dimension of the cross-attention projection. | |
| time_proj_dim ( `int`, *optional*, defaults to 256): Dimension of the timestep inner projection. | |
| global_states_input_dim ( `int`, *optional*, defaults to 1536): | |
| Input dimension of the global hidden states projection. | |
| cross_attention_input_dim ( `int`, *optional*, defaults to 768): | |
| Input dimension of the cross-attention projection | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| sample_size: int = 1024, | |
| in_channels: int = 64, | |
| num_layers: int = 24, | |
| attention_head_dim: int = 64, | |
| num_attention_heads: int = 24, | |
| num_key_value_attention_heads: int = 12, | |
| out_channels: int = 64, | |
| cross_attention_dim: int = 768, | |
| time_proj_dim: int = 256, | |
| global_states_input_dim: int = 1536, | |
| cross_attention_input_dim: int = 768, | |
| ): | |
| super().__init__() | |
| self.sample_size = sample_size | |
| self.out_channels = out_channels | |
| self.inner_dim = num_attention_heads * attention_head_dim | |
| self.time_proj = StableAudioGaussianFourierProjection( | |
| embedding_size=time_proj_dim // 2, | |
| flip_sin_to_cos=True, | |
| log=False, | |
| set_W_to_weight=False, | |
| ) | |
| self.timestep_proj = nn.Sequential( | |
| nn.Linear(time_proj_dim, self.inner_dim, bias=True), | |
| nn.SiLU(), | |
| nn.Linear(self.inner_dim, self.inner_dim, bias=True), | |
| ) | |
| self.global_proj = nn.Sequential( | |
| nn.Linear(global_states_input_dim, self.inner_dim, bias=False), | |
| nn.SiLU(), | |
| nn.Linear(self.inner_dim, self.inner_dim, bias=False), | |
| ) | |
| self.cross_attention_proj = nn.Sequential( | |
| nn.Linear(cross_attention_input_dim, cross_attention_dim, bias=False), | |
| nn.SiLU(), | |
| nn.Linear(cross_attention_dim, cross_attention_dim, bias=False), | |
| ) | |
| self.preprocess_conv = nn.Conv1d(in_channels, in_channels, 1, bias=False) | |
| self.proj_in = nn.Linear(in_channels, self.inner_dim, bias=False) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| StableAudioDiTBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| num_key_value_attention_heads=num_key_value_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| for i in range(num_layers) | |
| ] | |
| ) | |
| self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=False) | |
| self.postprocess_conv = nn.Conv1d(self.out_channels, self.out_channels, 1, bias=False) | |
| self.gradient_checkpointing = False | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor() | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| # Copied from diffusers.models.transformers.hunyuan_transformer_2d.HunyuanDiT2DModel.set_default_attn_processor with Hunyuan->StableAudio | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| self.set_attn_processor(StableAudioAttnProcessor2_0()) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| timestep: torch.LongTensor = None, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| global_hidden_states: torch.FloatTensor = None, | |
| rotary_embedding: torch.FloatTensor = None, | |
| return_dict: bool = True, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| encoder_attention_mask: Optional[torch.LongTensor] = None, | |
| ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | |
| """ | |
| The [`StableAudioDiTModel`] forward method. | |
| Args: | |
| hidden_states (`torch.FloatTensor` of shape `(batch size, in_channels, sequence_len)`): | |
| Input `hidden_states`. | |
| timestep ( `torch.LongTensor`): | |
| Used to indicate denoising step. | |
| encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, encoder_sequence_len, cross_attention_input_dim)`): | |
| Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
| global_hidden_states (`torch.FloatTensor` of shape `(batch size, global_sequence_len, global_states_input_dim)`): | |
| Global embeddings that will be prepended to the hidden states. | |
| rotary_embedding (`torch.Tensor`): | |
| The rotary embeddings to apply on query and key tensors during attention calculation. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
| tuple. | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*): | |
| Mask to avoid performing attention on padding token indices, formed by concatenating the attention | |
| masks | |
| for the two text encoders together. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*): | |
| Mask to avoid performing attention on padding token cross-attention indices, formed by concatenating | |
| the attention masks | |
| for the two text encoders together. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| Returns: | |
| If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
| `tuple` where the first element is the sample tensor. | |
| """ | |
| cross_attention_hidden_states = self.cross_attention_proj(encoder_hidden_states) | |
| global_hidden_states = self.global_proj(global_hidden_states) | |
| time_hidden_states = self.timestep_proj(self.time_proj(timestep.to(self.dtype))) | |
| global_hidden_states = global_hidden_states + time_hidden_states.unsqueeze(1) | |
| hidden_states = self.preprocess_conv(hidden_states) + hidden_states | |
| # (batch_size, dim, sequence_length) -> (batch_size, sequence_length, dim) | |
| hidden_states = hidden_states.transpose(1, 2) | |
| hidden_states = self.proj_in(hidden_states) | |
| # prepend global states to hidden states | |
| hidden_states = torch.cat([global_hidden_states, hidden_states], dim=-2) | |
| if attention_mask is not None: | |
| prepend_mask = torch.ones((hidden_states.shape[0], 1), device=hidden_states.device, dtype=torch.bool) | |
| attention_mask = torch.cat([prepend_mask, attention_mask], dim=-1) | |
| for block in self.transformer_blocks: | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| attention_mask, | |
| cross_attention_hidden_states, | |
| encoder_attention_mask, | |
| rotary_embedding, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| hidden_states = block( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=cross_attention_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| rotary_embedding=rotary_embedding, | |
| ) | |
| hidden_states = self.proj_out(hidden_states) | |
| # (batch_size, sequence_length, dim) -> (batch_size, dim, sequence_length) | |
| # remove prepend length that has been added by global hidden states | |
| hidden_states = hidden_states.transpose(1, 2)[:, :, 1:] | |
| hidden_states = self.postprocess_conv(hidden_states) + hidden_states | |
| if not return_dict: | |
| return (hidden_states,) | |
| return Transformer2DModelOutput(sample=hidden_states) | |