Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 the Latte Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Optional | |
| import torch | |
| from torch import nn | |
| from ...configuration_utils import ConfigMixin, register_to_config | |
| from ...models.embeddings import PixArtAlphaTextProjection, get_1d_sincos_pos_embed_from_grid | |
| from ..attention import BasicTransformerBlock | |
| from ..embeddings import PatchEmbed | |
| from ..modeling_outputs import Transformer2DModelOutput | |
| from ..modeling_utils import ModelMixin | |
| from ..normalization import AdaLayerNormSingle | |
| class LatteTransformer3DModel(ModelMixin, ConfigMixin): | |
| _supports_gradient_checkpointing = True | |
| """ | |
| A 3D Transformer model for video-like data, paper: https://arxiv.org/abs/2401.03048, offical code: | |
| https://github.com/Vchitect/Latte | |
| Parameters: | |
| num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
| in_channels (`int`, *optional*): | |
| The number of channels in the input. | |
| out_channels (`int`, *optional*): | |
| The number of channels in the output. | |
| num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
| attention_bias (`bool`, *optional*): | |
| Configure if the `TransformerBlocks` attention should contain a bias parameter. | |
| sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | |
| This is fixed during training since it is used to learn a number of position embeddings. | |
| patch_size (`int`, *optional*): | |
| The size of the patches to use in the patch embedding layer. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. | |
| num_embeds_ada_norm ( `int`, *optional*): | |
| The number of diffusion steps used during training. Pass if at least one of the norm_layers is | |
| `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are | |
| added to the hidden states. During inference, you can denoise for up to but not more steps than | |
| `num_embeds_ada_norm`. | |
| norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
| The type of normalization to use. Options are `"layer_norm"` or `"ada_layer_norm"`. | |
| norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
| Whether or not to use elementwise affine in normalization layers. | |
| norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use in normalization layers. | |
| caption_channels (`int`, *optional*): | |
| The number of channels in the caption embeddings. | |
| video_length (`int`, *optional*): | |
| The number of frames in the video-like data. | |
| """ | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| out_channels: Optional[int] = None, | |
| num_layers: int = 1, | |
| dropout: float = 0.0, | |
| cross_attention_dim: Optional[int] = None, | |
| attention_bias: bool = False, | |
| sample_size: int = 64, | |
| patch_size: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| norm_type: str = "layer_norm", | |
| norm_elementwise_affine: bool = True, | |
| norm_eps: float = 1e-5, | |
| caption_channels: int = None, | |
| video_length: int = 16, | |
| ): | |
| super().__init__() | |
| inner_dim = num_attention_heads * attention_head_dim | |
| # 1. Define input layers | |
| self.height = sample_size | |
| self.width = sample_size | |
| interpolation_scale = self.config.sample_size // 64 | |
| interpolation_scale = max(interpolation_scale, 1) | |
| self.pos_embed = PatchEmbed( | |
| height=sample_size, | |
| width=sample_size, | |
| patch_size=patch_size, | |
| in_channels=in_channels, | |
| embed_dim=inner_dim, | |
| interpolation_scale=interpolation_scale, | |
| ) | |
| # 2. Define spatial transformers blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| # 3. Define temporal transformers blocks | |
| self.temporal_transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=None, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| # 4. Define output layers | |
| self.out_channels = in_channels if out_channels is None else out_channels | |
| self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
| self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) | |
| self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
| # 5. Latte other blocks. | |
| self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=False) | |
| self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) | |
| # define temporal positional embedding | |
| temp_pos_embed = get_1d_sincos_pos_embed_from_grid( | |
| inner_dim, torch.arange(0, video_length).unsqueeze(1) | |
| ) # 1152 hidden size | |
| self.register_buffer("temp_pos_embed", torch.from_numpy(temp_pos_embed).float().unsqueeze(0), persistent=False) | |
| self.gradient_checkpointing = False | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| self.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| timestep: Optional[torch.LongTensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| enable_temporal_attentions: bool = True, | |
| return_dict: bool = True, | |
| ): | |
| """ | |
| The [`LatteTransformer3DModel`] forward method. | |
| Args: | |
| hidden_states shape `(batch size, channel, num_frame, height, width)`: | |
| Input `hidden_states`. | |
| timestep ( `torch.LongTensor`, *optional*): | |
| Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
| encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
| Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
| self-attention. | |
| encoder_attention_mask ( `torch.Tensor`, *optional*): | |
| Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: | |
| * Mask `(batcheight, sequence_length)` True = keep, False = discard. | |
| * Bias `(batcheight, 1, sequence_length)` 0 = keep, -10000 = discard. | |
| If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
| above. This bias will be added to the cross-attention scores. | |
| enable_temporal_attentions: | |
| (`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
| tuple. | |
| Returns: | |
| If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
| `tuple` where the first element is the sample tensor. | |
| """ | |
| # Reshape hidden states | |
| batch_size, channels, num_frame, height, width = hidden_states.shape | |
| # batch_size channels num_frame height width -> (batch_size * num_frame) channels height width | |
| hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(-1, channels, height, width) | |
| # Input | |
| height, width = ( | |
| hidden_states.shape[-2] // self.config.patch_size, | |
| hidden_states.shape[-1] // self.config.patch_size, | |
| ) | |
| num_patches = height * width | |
| hidden_states = self.pos_embed(hidden_states) # alrady add positional embeddings | |
| added_cond_kwargs = {"resolution": None, "aspect_ratio": None} | |
| timestep, embedded_timestep = self.adaln_single( | |
| timestep, added_cond_kwargs=added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype | |
| ) | |
| # Prepare text embeddings for spatial block | |
| # batch_size num_tokens hidden_size -> (batch_size * num_frame) num_tokens hidden_size | |
| encoder_hidden_states = self.caption_projection(encoder_hidden_states) # 3 120 1152 | |
| encoder_hidden_states_spatial = encoder_hidden_states.repeat_interleave(num_frame, dim=0).view( | |
| -1, encoder_hidden_states.shape[-2], encoder_hidden_states.shape[-1] | |
| ) | |
| # Prepare timesteps for spatial and temporal block | |
| timestep_spatial = timestep.repeat_interleave(num_frame, dim=0).view(-1, timestep.shape[-1]) | |
| timestep_temp = timestep.repeat_interleave(num_patches, dim=0).view(-1, timestep.shape[-1]) | |
| # Spatial and temporal transformer blocks | |
| for i, (spatial_block, temp_block) in enumerate( | |
| zip(self.transformer_blocks, self.temporal_transformer_blocks) | |
| ): | |
| if self.training and self.gradient_checkpointing: | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| spatial_block, | |
| hidden_states, | |
| None, # attention_mask | |
| encoder_hidden_states_spatial, | |
| encoder_attention_mask, | |
| timestep_spatial, | |
| None, # cross_attention_kwargs | |
| None, # class_labels | |
| use_reentrant=False, | |
| ) | |
| else: | |
| hidden_states = spatial_block( | |
| hidden_states, | |
| None, # attention_mask | |
| encoder_hidden_states_spatial, | |
| encoder_attention_mask, | |
| timestep_spatial, | |
| None, # cross_attention_kwargs | |
| None, # class_labels | |
| ) | |
| if enable_temporal_attentions: | |
| # (batch_size * num_frame) num_tokens hidden_size -> (batch_size * num_tokens) num_frame hidden_size | |
| hidden_states = hidden_states.reshape( | |
| batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1] | |
| ).permute(0, 2, 1, 3) | |
| hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1]) | |
| if i == 0 and num_frame > 1: | |
| hidden_states = hidden_states + self.temp_pos_embed | |
| if self.training and self.gradient_checkpointing: | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| temp_block, | |
| hidden_states, | |
| None, # attention_mask | |
| None, # encoder_hidden_states | |
| None, # encoder_attention_mask | |
| timestep_temp, | |
| None, # cross_attention_kwargs | |
| None, # class_labels | |
| use_reentrant=False, | |
| ) | |
| else: | |
| hidden_states = temp_block( | |
| hidden_states, | |
| None, # attention_mask | |
| None, # encoder_hidden_states | |
| None, # encoder_attention_mask | |
| timestep_temp, | |
| None, # cross_attention_kwargs | |
| None, # class_labels | |
| ) | |
| # (batch_size * num_tokens) num_frame hidden_size -> (batch_size * num_frame) num_tokens hidden_size | |
| hidden_states = hidden_states.reshape( | |
| batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1] | |
| ).permute(0, 2, 1, 3) | |
| hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1]) | |
| embedded_timestep = embedded_timestep.repeat_interleave(num_frame, dim=0).view(-1, embedded_timestep.shape[-1]) | |
| shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) | |
| hidden_states = self.norm_out(hidden_states) | |
| # Modulation | |
| hidden_states = hidden_states * (1 + scale) + shift | |
| hidden_states = self.proj_out(hidden_states) | |
| # unpatchify | |
| if self.adaln_single is None: | |
| height = width = int(hidden_states.shape[1] ** 0.5) | |
| hidden_states = hidden_states.reshape( | |
| shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels) | |
| ) | |
| hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
| output = hidden_states.reshape( | |
| shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size) | |
| ) | |
| output = output.reshape(batch_size, -1, output.shape[-3], output.shape[-2], output.shape[-1]).permute( | |
| 0, 2, 1, 3, 4 | |
| ) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer2DModelOutput(sample=output) | |