Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 AuraFlow Authors and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| from transformers import T5Tokenizer, UMT5EncoderModel | |
| from ...image_processor import VaeImageProcessor | |
| from ...models import AuraFlowTransformer2DModel, AutoencoderKL | |
| from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor | |
| from ...schedulers import FlowMatchEulerDiscreteScheduler | |
| from ...utils import logging, replace_example_docstring | |
| from ...utils.torch_utils import randn_tensor | |
| from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import AuraFlowPipeline | |
| >>> pipe = AuraFlowPipeline.from_pretrained("fal/AuraFlow", torch_dtype=torch.float16) | |
| >>> pipe = pipe.to("cuda") | |
| >>> prompt = "A cat holding a sign that says hello world" | |
| >>> image = pipe(prompt).images[0] | |
| >>> image.save("aura_flow.png") | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class AuraFlowPipeline(DiffusionPipeline): | |
| r""" | |
| Args: | |
| tokenizer (`T5TokenizerFast`): | |
| Tokenizer of class | |
| [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
| text_encoder ([`T5EncoderModel`]): | |
| Frozen text-encoder. AuraFlow uses | |
| [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
| [EleutherAI/pile-t5-xl](https://huggingface.co/EleutherAI/pile-t5-xl) variant. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| transformer ([`AuraFlowTransformer2DModel`]): | |
| Conditional Transformer (MMDiT and DiT) architecture to denoise the encoded image latents. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| """ | |
| _optional_components = [] | |
| model_cpu_offload_seq = "text_encoder->transformer->vae" | |
| def __init__( | |
| self, | |
| tokenizer: T5Tokenizer, | |
| text_encoder: UMT5EncoderModel, | |
| vae: AutoencoderKL, | |
| transformer: AuraFlowTransformer2DModel, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler | |
| ) | |
| self.vae_scale_factor = ( | |
| 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 | |
| ) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| prompt_attention_mask=None, | |
| negative_prompt_attention_mask=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and prompt_attention_mask is None: | |
| raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") | |
| if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: | |
| raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: | |
| raise ValueError( | |
| "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" | |
| f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" | |
| f" {negative_prompt_attention_mask.shape}." | |
| ) | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| negative_prompt: Union[str, List[str]] = None, | |
| do_classifier_free_guidance: bool = True, | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| max_sequence_length: int = 256, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` | |
| instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
| do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
| whether to use classifier free guidance or not | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| number of images that should be generated per prompt | |
| device: (`torch.device`, *optional*): | |
| torch device to place the resulting embeddings on | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Pre-generated attention mask for text embeddings. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. | |
| negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Pre-generated attention mask for negative text embeddings. | |
| max_sequence_length (`int`, defaults to 256): Maximum sequence length to use for the prompt. | |
| """ | |
| if device is None: | |
| device = self._execution_device | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| max_length = max_sequence_length | |
| if prompt_embeds is None: | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| truncation=True, | |
| max_length=max_length, | |
| padding="max_length", | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs["input_ids"] | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because T5 can only handle sequences up to" | |
| f" {max_length} tokens: {removed_text}" | |
| ) | |
| text_inputs = {k: v.to(device) for k, v in text_inputs.items()} | |
| prompt_embeds = self.text_encoder(**text_inputs)[0] | |
| prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).expand(prompt_embeds.shape) | |
| prompt_embeds = prompt_embeds * prompt_attention_mask | |
| if self.text_encoder is not None: | |
| dtype = self.text_encoder.dtype | |
| elif self.transformer is not None: | |
| dtype = self.transformer.dtype | |
| else: | |
| dtype = None | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| prompt_attention_mask = prompt_attention_mask.reshape(bs_embed, -1) | |
| prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| negative_prompt = negative_prompt or "" | |
| uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| truncation=True, | |
| max_length=max_length, | |
| padding="max_length", | |
| return_tensors="pt", | |
| ) | |
| uncond_input = {k: v.to(device) for k, v in uncond_input.items()} | |
| negative_prompt_embeds = self.text_encoder(**uncond_input)[0] | |
| negative_prompt_attention_mask = ( | |
| uncond_input["attention_mask"].unsqueeze(-1).expand(negative_prompt_embeds.shape) | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds * negative_prompt_attention_mask | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.reshape(bs_embed, -1) | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| else: | |
| negative_prompt_embeds = None | |
| negative_prompt_attention_mask = None | |
| return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask | |
| # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| if latents is not None: | |
| return latents.to(device=device, dtype=dtype) | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| int(height) // self.vae_scale_factor, | |
| int(width) // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| return latents | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae | |
| def upcast_vae(self): | |
| dtype = self.vae.dtype | |
| self.vae.to(dtype=torch.float32) | |
| use_torch_2_0_or_xformers = isinstance( | |
| self.vae.decoder.mid_block.attentions[0].processor, | |
| ( | |
| AttnProcessor2_0, | |
| XFormersAttnProcessor, | |
| FusedAttnProcessor2_0, | |
| ), | |
| ) | |
| # if xformers or torch_2_0 is used attention block does not need | |
| # to be in float32 which can save lots of memory | |
| if use_torch_2_0_or_xformers: | |
| self.vae.post_quant_conv.to(dtype) | |
| self.vae.decoder.conv_in.to(dtype) | |
| self.vae.decoder.mid_block.to(dtype) | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| num_inference_steps: int = 50, | |
| timesteps: List[int] = None, | |
| sigmas: List[float] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| height: Optional[int] = 1024, | |
| width: Optional[int] = 1024, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| max_sequence_length: int = 256, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| ) -> Union[ImagePipelineOutput, Tuple]: | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for best results. | |
| width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for best results. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 5.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Pre-generated attention mask for text embeddings. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Pre-generated attention mask for negative text embeddings. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
| of a plain tuple. | |
| max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`. | |
| Examples: | |
| Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned | |
| where the first element is a list with the generated images. | |
| """ | |
| # 1. Check inputs. Raise error if not correct | |
| height = height or self.transformer.config.sample_size * self.vae_scale_factor | |
| width = width or self.transformer.config.sample_size * self.vae_scale_factor | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_attention_mask, | |
| ) | |
| # 2. Determine batch size. | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| ( | |
| prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_embeds, | |
| negative_prompt_attention_mask, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| # 4. Prepare timesteps | |
| # sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device, timesteps, sigmas | |
| ) | |
| # 5. Prepare latents. | |
| latent_channels = self.transformer.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| latent_channels, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| # aura use timestep value between 0 and 1, with t=1 as noise and t=0 as the image | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = torch.tensor([t / 1000]).expand(latent_model_input.shape[0]) | |
| timestep = timestep.to(latents.device, dtype=latents.dtype) | |
| # predict noise model_output | |
| noise_pred = self.transformer( | |
| latent_model_input, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep=timestep, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
| if needs_upcasting: | |
| self.upcast_vae() | |
| latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |