import streamlit as st import os from langchain_community.document_loaders import PDFMinerLoader from langchain_community.embeddings import SentenceTransformerEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import FAISS from langchain.chains import RetrievalQA from langchain_community.llms import HuggingFacePipeline from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline import torch st.title("Custom PDF Chatbot") # Custom CSS for chat messages st.markdown(""" """, unsafe_allow_html=True) def get_file_size(file): file.seek(0, os.SEEK_END) file_size = file.tell() file.seek(0) return file_size # Add a sidebar for model selection and user details st.sidebar.write("Settings") st.sidebar.write("-----------") model_options = ["MBZUAI/LaMini-T5-738M", "google/flan-t5-base", "google/flan-t5-small"] selected_model = st.sidebar.radio("Choose Model", model_options) st.sidebar.write("-----------") uploaded_file = st.sidebar.file_uploader("Upload file", type=["pdf"]) st.sidebar.write("-----------") st.sidebar.write("About Me") st.sidebar.write("Name: Deepak Yadav") st.sidebar.write("Bio: Passionate about AI and machine learning. Enjoys working on innovative projects and sharing knowledge with the community.") st.sidebar.write("[GitHub](https://github.com/deepak7376)") st.sidebar.write("[LinkedIn](https://www.linkedin.com/in/dky7376/)") st.sidebar.write("-----------") @st.cache_resource def initialize_qa_chain(filepath, CHECKPOINT): loader = PDFMinerLoader(filepath) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500) splits = text_splitter.split_documents(documents) # Create embeddings embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") vectordb = FAISS.from_documents(splits, embeddings) # Initialize model TOKENIZER = AutoTokenizer.from_pretrained(CHECKPOINT) BASE_MODEL = AutoModelForSeq2SeqLM.from_pretrained(CHECKPOINT, device_map=torch.device('cpu'), torch_dtype=torch.float32) pipe = pipeline( 'text2text-generation', model=BASE_MODEL, tokenizer=TOKENIZER, max_length=256, do_sample=True, temperature=0.3, top_p=0.95, ) llm = HuggingFacePipeline(pipeline=pipe) # Build a QA chain qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=vectordb.as_retriever(), ) return qa_chain def process_answer(instruction, qa_chain): generated_text = qa_chain.run(instruction) return generated_text if uploaded_file is not None: os.makedirs("docs", exist_ok=True) filepath = os.path.join("docs", uploaded_file.name) with open(filepath, "wb") as temp_file: temp_file.write(uploaded_file.read()) temp_filepath = temp_file.name with st.spinner('Embeddings are in process...'): qa_chain = initialize_qa_chain(temp_filepath, selected_model) else: qa_chain = None # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: if message["role"] == "user": st.markdown(f"
", unsafe_allow_html=True) else: st.markdown(f" ", unsafe_allow_html=True) # React to user input if prompt := st.chat_input("What is up?"): # Display user message in chat message container st.markdown(f" ", unsafe_allow_html=True) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) if qa_chain: # Generate response response = process_answer({'query': prompt}, qa_chain) else: # Prompt to upload a file response = "Please upload a PDF file to enable the chatbot." # Display assistant response in chat message container st.markdown(f" ", unsafe_allow_html=True) # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response})