from tensorflow import keras import gradio as gr model = keras.models.load_model('facial_expression1.h5') class_names = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise'] def predict_input_image(img): img_4d=img.reshape(-1,48,48,1) prediction=model.predict(img_4d)[0] return {class_names[i]: float(prediction[i]) for i in range(len(class_names))} image = gr.inputs.Image(shape=(48,48)) label = gr.outputs.Label(num_top_classes=len(class_names)) gr.Interface(fn=predict_input_image, inputs=image, outputs=label,interpretation='default').launch(debug='True')