import torch import torch.nn as nn import torch.nn.functional as F # A simple MLP layer class FeedForwardNetwork(nn.Module): def __init__(self, input_size, hidden_size, output_size, dropout_rate=0): super(FeedForwardNetwork, self).__init__() self.dropout_rate = dropout_rate self.linear1 = nn.Linear(input_size, hidden_size) self.linear2 = nn.Linear(hidden_size, output_size) def forward(self, x): x_proj = F.dropout(F.relu(self.linear1(x)), p=self.dropout_rate, training=self.training) x_proj = self.linear2(x_proj) return x_proj # Span Prediction for Start Position class PoolerStartLogits(nn.Module): def __init__(self, hidden_size, num_classes): super(PoolerStartLogits, self).__init__() self.dense = nn.Linear(hidden_size, num_classes) def forward(self, hidden_states, p_mask=None): x = self.dense(hidden_states) return x # Span Prediction for End Position class PoolerEndLogits(nn.Module): def __init__(self, hidden_size, num_classes): super(PoolerEndLogits, self).__init__() self.dense_0 = nn.Linear(hidden_size, hidden_size) self.activation = nn.Tanh() self.LayerNorm = nn.LayerNorm(hidden_size) self.dense_1 = nn.Linear(hidden_size, num_classes) def forward(self, hidden_states, start_positions=None, p_mask=None): x = self.dense_0(torch.cat([hidden_states, start_positions], dim=-1)) x = self.activation(x) x = self.LayerNorm(x) x = self.dense_1(x) return x