import deeplabcut from tkinter import W import gradio as gr import numpy as np from dlclive import DLCLive, Processor ########################################## def predict_dlc(list_np_crops, kpts_likelihood_th, dlc_model_folder, dlc_proc): # run dlc thru list of crops dlc_live = DLCLive(dlc_model_folder, processor=dlc_proc) dlc_live.init_inference(list_np_crops[0]) list_kpts_per_crop = [] all_kypts = [] np_aux = np.empty((1,3)) # can I avoid hardcoding here? for crop in list_np_crops: # scale crop here? keypts_xyp = dlc_live.get_pose(crop) # third column is llk! # set kpts below threhsold to nan #pdb.set_trace() keypts_xyp[keypts_xyp[:,-1] < kpts_likelihood_th,:] = np_aux.fill(np.nan) # add kpts of this crop to list list_kpts_per_crop.append(keypts_xyp) all_kypts.append(keypts_xyp) return list_kpts_per_crop