import gradio as gr import requests import io import random import os import time from PIL import Image from deep_translator import GoogleTranslator import json from themes import IndonesiaTheme # Import custom IndonesiaTheme # Project by Nymbo API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" API_TOKEN = os.getenv("HF_READ_TOKEN") headers = {"Authorization": f"Bearer {API_TOKEN}"} timeout = 100 # Function to query the API and return the generated image def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024): if prompt == "" or prompt is None: return None key = random.randint(0, 999) API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")]) headers = {"Authorization": f"Bearer {API_TOKEN}"} # Translate the prompt from Russian to English if necessary prompt = GoogleTranslator(source='ru', target='en').translate(prompt) print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') # Add some extra flair to the prompt prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." print(f'\033[1mGeneration {key}:\033[0m {prompt}') # Prepare the payload for the API call, including width and height payload = { "inputs": prompt, "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed != -1 else random.randint(1, 1000000000), "strength": strength, "parameters": { "width": width, # Pass the width to the API "height": height # Pass the height to the API } } # Send the request to the API and handle the response response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) if response.status_code != 200: print(f"Error: Failed to get image. Response status: {response.status_code}") print(f"Response content: {response.text}") if response.status_code == 503: raise gr.Error(f"{response.status_code} : The model is being loaded") raise gr.Error(f"{response.status_code}") try: # Convert the response content into an image image_bytes = response.content image = Image.open(io.BytesIO(image_bytes)) print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') return image except Exception as e: print(f"Error when trying to open the image: {e}") return None # CSS to style the app css = """ #app-container { max-width: 800px; margin-left: auto; margin-right: auto; padding: 20px; background-color: #2b2b2b; border-radius: 15px; box-shadow: 0 4px 10px rgba(0, 0, 0, 0.4); } h1 { font-size: 2.5rem; text-align: center; color: #ffa500; margin-bottom: 10px; font-weight: bold; text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3); } .description { text-align: center; font-size: 1.2rem; color: black; margin-bottom: 20px; font-style: italic; } #gen-button { background-color: #ff9800; color: white; font-weight: bold; border-radius: 10px; padding: 15px; transition: background-color 0.3s ease; } #gen-button:hover { background-color: #e67e22; transform: scale(1.05); } #gallery { border: 2px solid #ff9800; border-radius: 15px; } #prompt-text-input, #negative-prompt-text-input { background-color: #444444; color: white; border-radius: 8px; border: 1px solid #ffa500; } label { color: #ffffff; } """ # Build the Gradio UI with Blocks with gr.Blocks(theme=IndonesiaTheme(), css=css) as app: # Add a title to the app with an emoji and large header gr.HTML("
🚀 Generator gambar AI berkualitas tinggi dengan kontrol penuh atas detail dan opsi lanjutan. Buat karya seni spektakuler dengan mudah! 🎨
") # Container for all the UI elements with gr.Column(elem_id="app-container"): # Add a text input for the main prompt with gr.Row(): with gr.Column(elem_id="prompt-container"): with gr.Row(): text_prompt = gr.Textbox(label="🎨 Prompt", placeholder="Masukkan deskripsi gambar di sini", lines=2, elem_id="prompt-text-input") # Accordion for advanced settings with gr.Row(): with gr.Accordion("⚙️ Pengaturan Lanjutan", open=False): negative_prompt = gr.Textbox(label="❌ Prompt Negatif", placeholder="Elemen yang tidak diinginkan dalam gambar", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input") with gr.Row(): width = gr.Slider(label="Lebar", value=1024, minimum=64, maximum=1216, step=32) height = gr.Slider(label="Tinggi", value=768, minimum=64, maximum=1216, step=32) steps = gr.Slider(label="Langkah Sampling", value=4, minimum=1, maximum=100, step=1) cfg = gr.Slider(label="Skala CFG", value=7, minimum=1, maximum=20, step=1) strength = gr.Slider(label="Kekuatan", value=0.7, minimum=0, maximum=1, step=0.001) seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # -1 for random method = gr.Radio(label="Metode Sampling", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) # Add a button to trigger the image generation with gr.Row(): text_button = gr.Button("🚀 Buat Gambar", variant='primary', elem_id="gen-button") # Image output area to display the generated image with gr.Row(): image_output = gr.Image(type="pil", label="Hasil Gambar", elem_id="gallery") # Bind the button to the query function with the added width and height inputs text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output) # Launch the Gradio app app.launch(show_api=False, share=False)