diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..86d3ddba0d54a0c5c238cac65e301ca2899fc2a5 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +example_inputs/pengwei.jpg filter=lfs diff=lfs merge=lfs -text diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/README.md b/README.md index 88af35bd63fd5cf031dd91253f847e68accd21cc..b60216860f6ee671b13403748bbb1c74d361916e 100644 --- a/README.md +++ b/README.md @@ -1,13 +1,13 @@ --- -title: PuLid FLX GPU -emoji: 🏆 -colorFrom: yellow -colorTo: yellow +title: PuLID-FLUX +emoji: 🤗 +colorFrom: blue +colorTo: indigo sdk: gradio sdk_version: 4.44.0 app_file: app.py pinned: false -license: mit +license: apache-2.0 --- -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference +Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference \ No newline at end of file diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..c3189e8f52ac4549438806bd5ad8d2d1431e20ac --- /dev/null +++ b/app.py @@ -0,0 +1,197 @@ +# Import Gradio dan client API +import gradio as gr +from PIL import Image +import numpy as np +import tempfile +from gradio_client import Client, handle_file +from themes import IndonesiaTheme # Impor tema custom +import os + +# Siapkan URL untuk permintaan API Virtual Try-On +url_api = os.environ['url_api'] + +# Fungsi untuk memanggil API /generate_image +def generate_image(prompt, id_image, start_step, guidance, seed, true_cfg, width, height, num_steps, id_weight, neg_prompt, timestep_to_start_cfg, max_sequence_length): + client = Client(url_api) + + try: + # Jika id_image adalah numpy array, konversikan ke gambar menggunakan PIL + if isinstance(id_image, np.ndarray): + id_image_pil = Image.fromarray(id_image.astype('uint8')) # Konversi ke format gambar dari numpy array + + # Simpan gambar sebagai file sementara + with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: + id_image_pil.save(temp_file.name) # Simpan gambar PIL ke file sementara + + # Panggil API dengan file gambar + result = client.predict( + prompt=prompt, + id_image=handle_file(temp_file.name), # Kirim file gambar ke API + start_step=start_step, + guidance=guidance, + seed=seed, + true_cfg=true_cfg, + width=width, + height=height, + num_steps=num_steps, + id_weight=id_weight, + neg_prompt=neg_prompt, + timestep_to_start_cfg=timestep_to_start_cfg, + max_sequence_length=max_sequence_length, + api_name="/generate_image" + ) + + else: + raise ValueError("Gambar yang diunggah tidak valid.") + + # Proses keluaran dari API + generated_image_path = result[0] # Ambil path gambar yang dihasilkan + used_seed = result[1] # Ambil seed yang digunakan + output_gallery_items = [] # List untuk menampung item galeri + + # Ekstrak daftar gambar dari hasil API (jika ada lebih dari satu gambar) + if isinstance(result[2], list): + for item in result[2]: + if 'image' in item: + output_gallery_items.append((item['image'], item.get('caption', ''))) # Tambahkan gambar dan keterangan ke galeri + + # Jika tidak ada error, kembalikan hasil gambar dan seed + return generated_image_path, used_seed, "Success: Image generated successfully." + + except Exception as e: + # Jika terjadi error, kembalikan pesan error ke "system_result" + error_message = f"Error: {str(e)}" + return None, None, error_message + +# CSS untuk styling antarmuka +css = """ +#col-left, #col-mid { + margin: 0 auto; + max-width: 400px; + padding: 10px; + border-radius: 15px; + background-color: #f9f9f9; + box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); +} +#col-right { + margin: 0 auto; + max-width: 400px; + padding: 10px; + border-radius: 15px; + background: linear-gradient(180deg, #B6BBC4, #EEEEEE); + color: white; + box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); +} +#col-bott { + margin: 0 auto; + padding: 10px; + border-radius: 15px; + background-color: #f9f9f9; + box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); +} +#banner { + width: 100%; + text-align: center; + margin-bottom: 20px; +} +#run-button { + background-color: #ff4b5c; + color: white; + font-weight: bold; + padding: 30px; + border-radius: 10px; + cursor: pointer; + box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); +} +#footer { + text-align: center; + margin-top: 20px; + color: silver; +} +#markdown-silver { + color: silver; /* Mengatur warna font Markdown menjadi silver */ +} +""" + + +# Antarmuka Gradio +with gr.Blocks(css=css, theme=IndonesiaTheme()) as PuLidFluxApp: + # Tambahkan banner + gr.HTML(""" +
+ Banner +
+ """) + gr.HTML("

Aplikasi Pembuatan Gambar Menggunakan PuLID-FLUX

") + + with gr.Row(): + with gr.Column(elem_id="col-left"): + gr.Markdown("### ➡️ Deskripsi Gambar") + prompt = gr.Textbox(label="Prompt", value="portrait, color, cinematic") + gr.Markdown("### ➡️ Sumber Wajah") + id_image = gr.Image(label="Foto Wajah") + neg_prompt = gr.Textbox(label="Negative Prompt", value="bad quality, worst quality, text, signature, watermark, extra limbs") + + with gr.Column(elem_id="col-mid"): + gr.Markdown("### ➡️ Advanced Parameters") + start_step = gr.Slider(label="Timestep to Start", minimum=0, maximum=10, value=0) + guidance = gr.Slider(label="Guidance", minimum=0, maximum=10, value=4) + seed = gr.Textbox(label="Seed (-1 for random)", value="-1") + true_cfg = gr.Slider(label="True CFG Scale", minimum=0, maximum=10, value=1) + width = gr.Slider(label="Width", minimum=100, maximum=2000, value=896) + height = gr.Slider(label="Height", minimum=100, maximum=2000, value=1152) + num_steps = gr.Slider(label="Number of Steps", minimum=1, maximum=100, value=20) + id_weight = gr.Slider(label="ID Weight", minimum=0, maximum=1, value=1) + timestep_to_start_cfg = gr.Slider(label="Timestep to Start CFG", minimum=0, maximum=10, value=1) + max_sequence_length = gr.Slider(label="Max Sequence Length", minimum=1, maximum=512, value=128) + + with gr.Column(elem_id="col-right"): + gr.Markdown(""" + ### Paper: PuLID: [Pure and Lightning ID Customization via Contrastive Alignment](https://arxiv.org/abs/2404.16022) | [Codes: GitHub](https://github.com/ToTheBeginning/PuLID) + + ### 💡Tips: + + - **Timestep to start inserting ID**: + - Semakin kecil nilainya, semakin tinggi kesetiaannya, namun semakin rendah kemampuan untuk mengedit; semakin tinggi nilainya, semakin rendah kesetiaannya, namun semakin tinggi kemampuan untuk mengedit. + - Rentang yang disarankan untuk nilai ini adalah antara 0 hingga 4. Untuk adegan fotorealistik, kami merekomendasikan menggunakan 4; untuk adegan bergaya, kami merekomendasikan menggunakan 0-1. + - Jika Anda tidak puas dengan kemiripannya, Anda dapat menurunkan nilai ini; sebaliknya, jika Anda tidak puas dengan kemampuan pengeditan, Anda dapat menaikkan nilai ini. + + - **True CFG scale**: + - Dalam sebagian besar skenario, disarankan menggunakan fake CFG, yaitu dengan mengatur true CFG scale ke 1, dan hanya menyesuaikan guidance scale. Hal ini juga lebih efisien. + - Namun, dalam beberapa kasus, penggunaan true CFG dapat menghasilkan hasil yang lebih baik. Untuk informasi lebih detail, silakan merujuk ke dokumentasi. + + - **Pelajari lebih lanjut tentang model**: + - Silakan merujuk ke dokumentasi GitHub untuk detail lebih lanjut dan informasi tentang model. Kami menyediakan penjelasan detail tentang kedua parameter di atas dalam dokumen. + + - **Contoh**: + - Kami menyediakan beberapa contoh (sudah di-cache, jadi cukup klik untuk melihat apa yang dapat dilakukan model) di bagian bawah. Anda bisa mencoba prompt contoh tersebut terlebih dahulu. + """, elem_id="markdown-silver") + + + # Tombol untuk memulai proses + with gr.Row(): + with gr.Column(elem_id="col-bott"): + run_button = gr.Button("⭐ Mulai Generate Image ⭐", elem_id="run-button") + gr.Markdown("### ✅ Hasil Generated PuLID") + generated_image = gr.Image(label="Generated Image") + used_seed = gr.Textbox(label="Used Seed") + system_result = gr.Textbox(label="System Result") # Output tambahan untuk menampilkan hasil/error + + # Menghubungkan tombol dengan fungsi pemanggilan API + run_button.click( + fn=generate_image, + inputs=[prompt, id_image, start_step, guidance, seed, true_cfg, width, height, num_steps, id_weight, neg_prompt, timestep_to_start_cfg, max_sequence_length], + outputs=[generated_image, used_seed, system_result] # Tambahkan system_result sebagai output + ) + + + # Tambahkan footer di bagian bawah + gr.HTML(""" + + """) + +# Menjalankan aplikasi +if __name__ == "__main__": + PuLidFluxApp.queue(api_open=False).launch(show_api=False) diff --git a/eva_clip/__init__.py b/eva_clip/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..87b1928e8fcc57971f2bb372eb0dd0a1edf51b79 --- /dev/null +++ b/eva_clip/__init__.py @@ -0,0 +1,10 @@ +from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD +from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer, create_transforms +from .factory import list_models, add_model_config, get_model_config, load_checkpoint +from .model import CLIP, CustomCLIP, CLIPTextCfg, CLIPVisionCfg,\ + convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype +from .openai import load_openai_model, list_openai_models +from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model,\ + get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained +from .tokenizer import SimpleTokenizer, tokenize +from .transform import image_transform \ No newline at end of file diff --git a/eva_clip/bpe_simple_vocab_16e6.txt.gz b/eva_clip/bpe_simple_vocab_16e6.txt.gz new file mode 100644 index 0000000000000000000000000000000000000000..36a15856e00a06a9fbed8cdd34d2393fea4a3113 --- /dev/null +++ b/eva_clip/bpe_simple_vocab_16e6.txt.gz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a +size 1356917 diff --git a/eva_clip/constants.py b/eva_clip/constants.py new file mode 100644 index 0000000000000000000000000000000000000000..a670bb3fab442baeb9af53b91c312e6982af57ee --- /dev/null +++ b/eva_clip/constants.py @@ -0,0 +1,2 @@ +OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073) +OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711) diff --git a/eva_clip/eva_vit_model.py b/eva_clip/eva_vit_model.py new file mode 100644 index 0000000000000000000000000000000000000000..f0f42bd09571b3d8a2cf675d0fc43a33e32915e3 --- /dev/null +++ b/eva_clip/eva_vit_model.py @@ -0,0 +1,633 @@ +# -------------------------------------------------------- +# Adapted from https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- +import math +import os +from functools import partial +from itertools import repeat +import collections.abc +import torch +import torch.nn as nn +import warnings +import torch.nn.functional as F + +from .transformer import PatchDropout +from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast + +if os.getenv('ENV_TYPE') == 'deepspeed': + try: + from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint + except: + from torch.utils.checkpoint import checkpoint +else: + from torch.utils.checkpoint import checkpoint + +try: + import xformers + import xformers.ops as xops + XFORMERS_IS_AVAILBLE = True +except: + XFORMERS_IS_AVAILBLE = False + + +def _ntuple(n): + def parse(x): + if isinstance(x, collections.abc.Iterable): + return x + return tuple(repeat(x, n)) + return parse + +to_2tuple = _ntuple(2) + +def _no_grad_trunc_normal_(tensor, mean, std, a, b): + # Cut & paste from PyTorch official master until it's in a few official releases - RW + # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf + def norm_cdf(x): + # Computes standard normal cumulative distribution function + return (1. + math.erf(x / math.sqrt(2.))) / 2. + + if (mean < a - 2 * std) or (mean > b + 2 * std): + warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " + "The distribution of values may be incorrect.", + stacklevel=2) + + with torch.no_grad(): + # Values are generated by using a truncated uniform distribution and + # then using the inverse CDF for the normal distribution. + # Get upper and lower cdf values + l = norm_cdf((a - mean) / std) + u = norm_cdf((b - mean) / std) + + # Uniformly fill tensor with values from [l, u], then translate to + # [2l-1, 2u-1]. + tensor.uniform_(2 * l - 1, 2 * u - 1) + + # Use inverse cdf transform for normal distribution to get truncated + # standard normal + tensor.erfinv_() + + # Transform to proper mean, std + tensor.mul_(std * math.sqrt(2.)) + tensor.add_(mean) + + # Clamp to ensure it's in the proper range + tensor.clamp_(min=a, max=b) + return tensor + + +def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): + # type: (Tensor, float, float, float, float) -> Tensor + r"""Fills the input Tensor with values drawn from a truncated + normal distribution. The values are effectively drawn from the + normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` + with values outside :math:`[a, b]` redrawn until they are within + the bounds. The method used for generating the random values works + best when :math:`a \leq \text{mean} \leq b`. + Args: + tensor: an n-dimensional `torch.Tensor` + mean: the mean of the normal distribution + std: the standard deviation of the normal distribution + a: the minimum cutoff value + b: the maximum cutoff value + Examples: + >>> w = torch.empty(3, 5) + >>> nn.init.trunc_normal_(w) + """ + return _no_grad_trunc_normal_(tensor, mean, std, a, b) + +def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, + the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for + changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use + 'survival rate' as the argument. + + """ + if drop_prob == 0. or not training: + return x + keep_prob = 1 - drop_prob + shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = x.new_empty(shape).bernoulli_(keep_prob) + if keep_prob > 0.0 and scale_by_keep: + random_tensor.div_(keep_prob) + return x * random_tensor + + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + """ + def __init__(self, drop_prob=None): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return 'p={}'.format(self.drop_prob) + + +class Mlp(nn.Module): + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + drop=0., + subln=False, + + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + + self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() + + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + # x = self.drop(x) + # commit this for the orignal BERT implement + x = self.ffn_ln(x) + + x = self.fc2(x) + x = self.drop(x) + return x + +class SwiGLU(nn.Module): + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0., + norm_layer=nn.LayerNorm, subln=False): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + + self.w1 = nn.Linear(in_features, hidden_features) + self.w2 = nn.Linear(in_features, hidden_features) + + self.act = act_layer() + self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() + self.w3 = nn.Linear(hidden_features, out_features) + + self.drop = nn.Dropout(drop) + + def forward(self, x): + x1 = self.w1(x) + x2 = self.w2(x) + hidden = self.act(x1) * x2 + x = self.ffn_ln(hidden) + x = self.w3(x) + x = self.drop(x) + return x + +class Attention(nn.Module): + def __init__( + self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., + proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + if attn_head_dim is not None: + head_dim = attn_head_dim + all_head_dim = head_dim * self.num_heads + self.scale = qk_scale or head_dim ** -0.5 + + self.subln = subln + if self.subln: + self.q_proj = nn.Linear(dim, all_head_dim, bias=False) + self.k_proj = nn.Linear(dim, all_head_dim, bias=False) + self.v_proj = nn.Linear(dim, all_head_dim, bias=False) + else: + self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) + + if qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) + self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) + else: + self.q_bias = None + self.v_bias = None + + if window_size: + self.window_size = window_size + self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter( + torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH + # cls to token & token 2 cls & cls to cls + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(window_size[0]) + coords_w = torch.arange(window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * window_size[1] - 1 + relative_position_index = \ + torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) + relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + relative_position_index[0, 0:] = self.num_relative_distance - 3 + relative_position_index[0:, 0] = self.num_relative_distance - 2 + relative_position_index[0, 0] = self.num_relative_distance - 1 + + self.register_buffer("relative_position_index", relative_position_index) + else: + self.window_size = None + self.relative_position_bias_table = None + self.relative_position_index = None + + self.attn_drop = nn.Dropout(attn_drop) + self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity() + # self.proj = nn.Linear(all_head_dim, all_head_dim) + self.proj = nn.Linear(all_head_dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.xattn = xattn + self.xattn_drop = attn_drop + + self.rope = rope + + def forward(self, x, rel_pos_bias=None, attn_mask=None): + B, N, C = x.shape + if self.subln: + q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias) + k = F.linear(input=x, weight=self.k_proj.weight, bias=None) + v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias) + + q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C + k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) + v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) + else: + + qkv_bias = None + if self.q_bias is not None: + qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) + + qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) + qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C + q, k, v = qkv[0], qkv[1], qkv[2] + + if self.rope: + # slightly fast impl + q_t = q[:, :, 1:, :] + ro_q_t = self.rope(q_t) + q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v) + + k_t = k[:, :, 1:, :] + ro_k_t = self.rope(k_t) + k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v) + + if self.xattn: + q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C + k = k.permute(0, 2, 1, 3) + v = v.permute(0, 2, 1, 3) + + x = xops.memory_efficient_attention( + q, k, v, + p=self.xattn_drop, + scale=self.scale, + ) + x = x.reshape(B, N, -1) + x = self.inner_attn_ln(x) + x = self.proj(x) + x = self.proj_drop(x) + else: + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + if self.relative_position_bias_table is not None: + relative_position_bias = \ + self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1] + 1, + self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0).type_as(attn) + + if rel_pos_bias is not None: + attn = attn + rel_pos_bias.type_as(attn) + + if attn_mask is not None: + attn_mask = attn_mask.bool() + attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf")) + + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, -1) + x = self.inner_attn_ln(x) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., + drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, + window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False, + subln=False, naiveswiglu=False): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, + attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim, + xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer) + # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + + if naiveswiglu: + self.mlp = SwiGLU( + in_features=dim, + hidden_features=mlp_hidden_dim, + subln=subln, + norm_layer=norm_layer, + ) + else: + self.mlp = Mlp( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + subln=subln, + drop=drop + ) + + if init_values is not None and init_values > 0: + self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) + self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) + else: + self.gamma_1, self.gamma_2 = None, None + + self.postnorm = postnorm + + def forward(self, x, rel_pos_bias=None, attn_mask=None): + if self.gamma_1 is None: + if self.postnorm: + x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) + x = x + self.drop_path(self.norm2(self.mlp(x))) + else: + x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) + x = x + self.drop_path(self.mlp(self.norm2(x))) + else: + if self.postnorm: + x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) + x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x))) + else: + x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) + x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) + return x + + +class PatchEmbed(nn.Module): + """ Image to Patch Embedding + """ + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) + self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) + self.img_size = img_size + self.patch_size = patch_size + self.num_patches = num_patches + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + + def forward(self, x, **kwargs): + B, C, H, W = x.shape + # FIXME look at relaxing size constraints + assert H == self.img_size[0] and W == self.img_size[1], \ + f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + x = self.proj(x).flatten(2).transpose(1, 2) + return x + + +class RelativePositionBias(nn.Module): + + def __init__(self, window_size, num_heads): + super().__init__() + self.window_size = window_size + self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter( + torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH + # cls to token & token 2 cls & cls to cls + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(window_size[0]) + coords_w = torch.arange(window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * window_size[1] - 1 + relative_position_index = \ + torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) + relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + relative_position_index[0, 0:] = self.num_relative_distance - 3 + relative_position_index[0:, 0] = self.num_relative_distance - 2 + relative_position_index[0, 0] = self.num_relative_distance - 1 + + self.register_buffer("relative_position_index", relative_position_index) + + def forward(self): + relative_position_bias = \ + self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1] + 1, + self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH + return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + + +class EVAVisionTransformer(nn.Module): + """ Vision Transformer with support for patch or hybrid CNN input stage + """ + def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, + num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., + drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0., + use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False, + use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False, + pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False): + super().__init__() + + if not XFORMERS_IS_AVAILBLE: + xattn = False + + self.image_size = img_size + self.num_classes = num_classes + self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models + + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + num_patches = self.patch_embed.num_patches + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + if use_abs_pos_emb: + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) + else: + self.pos_embed = None + self.pos_drop = nn.Dropout(p=drop_rate) + + if use_shared_rel_pos_bias: + self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) + else: + self.rel_pos_bias = None + + if rope: + half_head_dim = embed_dim // num_heads // 2 + hw_seq_len = img_size // patch_size + self.rope = VisionRotaryEmbeddingFast( + dim=half_head_dim, + pt_seq_len=pt_hw_seq_len, + ft_seq_len=hw_seq_len if intp_freq else None, + # patch_dropout=patch_dropout + ) + else: + self.rope = None + + self.naiveswiglu = naiveswiglu + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + self.use_rel_pos_bias = use_rel_pos_bias + self.blocks = nn.ModuleList([ + Block( + dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, + init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, + xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu) + for i in range(depth)]) + self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) + self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + if self.pos_embed is not None: + trunc_normal_(self.pos_embed, std=.02) + + trunc_normal_(self.cls_token, std=.02) + # trunc_normal_(self.mask_token, std=.02) + + self.apply(self._init_weights) + self.fix_init_weight() + + if isinstance(self.head, nn.Linear): + trunc_normal_(self.head.weight, std=.02) + self.head.weight.data.mul_(init_scale) + self.head.bias.data.mul_(init_scale) + + # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn + self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() + + self.grad_checkpointing = grad_checkpointing + + def fix_init_weight(self): + def rescale(param, layer_id): + param.div_(math.sqrt(2.0 * layer_id)) + + for layer_id, layer in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + if self.naiveswiglu: + rescale(layer.mlp.w3.weight.data, layer_id + 1) + else: + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + def get_cast_dtype(self) -> torch.dtype: + return self.blocks[0].mlp.fc2.weight.dtype + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + def get_num_layers(self): + return len(self.blocks) + + def lock(self, unlocked_groups=0, freeze_bn_stats=False): + assert unlocked_groups == 0, 'partial locking not currently supported for this model' + for param in self.parameters(): + param.requires_grad = False + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + def get_classifier(self): + return self.head + + def reset_classifier(self, num_classes, global_pool=''): + self.num_classes = num_classes + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x, return_all_features=False, return_hidden=False, shuffle=False): + + x = self.patch_embed(x) + batch_size, seq_len, _ = x.size() + + if shuffle: + idx = torch.randperm(x.shape[1]) + 1 + zero = torch.LongTensor([0, ]) + idx = torch.cat([zero, idx]) + pos_embed = self.pos_embed[:, idx] + + cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks + x = torch.cat((cls_tokens, x), dim=1) + if shuffle: + x = x + pos_embed + elif self.pos_embed is not None: + x = x + self.pos_embed + x = self.pos_drop(x) + + # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in + if os.getenv('RoPE') == '1': + if self.training and not isinstance(self.patch_dropout, nn.Identity): + x, patch_indices_keep = self.patch_dropout(x) + self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep) + else: + self.rope.forward = partial(self.rope.forward, patch_indices_keep=None) + x = self.patch_dropout(x) + else: + x = self.patch_dropout(x) + + rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None + hidden_states = [] + for idx, blk in enumerate(self.blocks): + if (0 < idx <= 20) and (idx % 4 == 0) and return_hidden: + hidden_states.append(x) + if self.grad_checkpointing: + x = checkpoint(blk, x, (rel_pos_bias,)) + else: + x = blk(x, rel_pos_bias=rel_pos_bias) + + if not return_all_features: + x = self.norm(x) + if self.fc_norm is not None: + return self.fc_norm(x.mean(1)), hidden_states + else: + return x[:, 0], hidden_states + return x + + def forward(self, x, return_all_features=False, return_hidden=False, shuffle=False): + if return_all_features: + return self.forward_features(x, return_all_features, return_hidden, shuffle) + x, hidden_states = self.forward_features(x, return_all_features, return_hidden, shuffle) + x = self.head(x) + if return_hidden: + return x, hidden_states + return x diff --git a/eva_clip/factory.py b/eva_clip/factory.py new file mode 100644 index 0000000000000000000000000000000000000000..ced8999997bf374b69f846bc73ea635fe8a6eb63 --- /dev/null +++ b/eva_clip/factory.py @@ -0,0 +1,517 @@ +import json +import logging +import os +import pathlib +import re +from copy import deepcopy +from pathlib import Path +from typing import Optional, Tuple, Union, Dict, Any +import torch + +from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD +from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\ + get_cast_dtype +from .openai import load_openai_model +from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model +from .transform import image_transform +from .tokenizer import HFTokenizer, tokenize +from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed + + +_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] +_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs + + +def _natural_key(string_): + return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] + + +def _rescan_model_configs(): + global _MODEL_CONFIGS + + config_ext = ('.json',) + config_files = [] + for config_path in _MODEL_CONFIG_PATHS: + if config_path.is_file() and config_path.suffix in config_ext: + config_files.append(config_path) + elif config_path.is_dir(): + for ext in config_ext: + config_files.extend(config_path.glob(f'*{ext}')) + + for cf in config_files: + with open(cf, "r", encoding="utf8") as f: + model_cfg = json.load(f) + if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')): + _MODEL_CONFIGS[cf.stem] = model_cfg + + _MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))) + + +_rescan_model_configs() # initial populate of model config registry + + +def list_models(): + """ enumerate available model architectures based on config files """ + return list(_MODEL_CONFIGS.keys()) + + +def add_model_config(path): + """ add model config path or file and update registry """ + if not isinstance(path, Path): + path = Path(path) + _MODEL_CONFIG_PATHS.append(path) + _rescan_model_configs() + + +def get_model_config(model_name): + if model_name in _MODEL_CONFIGS: + return deepcopy(_MODEL_CONFIGS[model_name]) + else: + return None + + +def get_tokenizer(model_name): + config = get_model_config(model_name) + tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize + return tokenizer + + +# loading openai CLIP weights when is_openai=True for training +def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]): + if is_openai: + model = torch.jit.load(checkpoint_path, map_location="cpu").eval() + state_dict = model.state_dict() + for key in ["input_resolution", "context_length", "vocab_size"]: + state_dict.pop(key, None) + else: + checkpoint = torch.load(checkpoint_path, map_location=map_location) + for mk in model_key.split('|'): + if isinstance(checkpoint, dict) and mk in checkpoint: + state_dict = checkpoint[mk] + break + else: + state_dict = checkpoint + if next(iter(state_dict.items()))[0].startswith('module'): + state_dict = {k[7:]: v for k, v in state_dict.items()} + + for k in skip_list: + if k in list(state_dict.keys()): + logging.info(f"Removing key {k} from pretrained checkpoint") + del state_dict[k] + + if os.getenv('RoPE') == '1': + for k in list(state_dict.keys()): + if 'freqs_cos' in k or 'freqs_sin' in k: + del state_dict[k] + return state_dict + + + +def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True): + state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False) + # detect old format and make compatible with new format + if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'): + state_dict = convert_to_custom_text_state_dict(state_dict) + if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'): + state_dict['logit_scale'] = state_dict['text.logit_scale'] + del state_dict['text.logit_scale'] + + # resize_clip_pos_embed for CLIP and open CLIP + if 'visual.positional_embedding' in state_dict: + resize_clip_pos_embed(state_dict, model) + # specified to eva_vit_model + elif 'visual.pos_embed' in state_dict: + resize_evaclip_pos_embed(state_dict, model) + + # resize_clip_pos_embed(state_dict, model) + incompatible_keys = model.load_state_dict(state_dict, strict=strict) + logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}") + return incompatible_keys + +def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]): + state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) + + for k in list(state_dict.keys()): + if not k.startswith('visual.'): + del state_dict[k] + for k in list(state_dict.keys()): + if k.startswith('visual.'): + new_k = k[7:] + state_dict[new_k] = state_dict[k] + del state_dict[k] + return state_dict + +def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]): + state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) + + for k in list(state_dict.keys()): + if k.startswith('visual.'): + del state_dict[k] + return state_dict + +def get_pretrained_tag(pretrained_model): + pretrained_model = pretrained_model.lower() + if "laion" in pretrained_model or "open_clip" in pretrained_model: + return "open_clip" + elif "openai" in pretrained_model: + return "clip" + elif "eva" in pretrained_model and "clip" in pretrained_model: + return "eva_clip" + else: + return "other" + +def load_pretrained_checkpoint( + model, + visual_checkpoint_path, + text_checkpoint_path, + strict=True, + visual_model=None, + text_model=None, + model_key="model|module|state_dict", + skip_list=[]): + visual_tag = get_pretrained_tag(visual_model) + text_tag = get_pretrained_tag(text_model) + + logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}") + visual_incompatible_keys, text_incompatible_keys = None, None + if visual_checkpoint_path: + if visual_tag == "eva_clip" or visual_tag == "open_clip": + visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list) + elif visual_tag == "clip": + visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list) + else: + visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) + + # resize_clip_pos_embed for CLIP and open CLIP + if 'positional_embedding' in visual_state_dict: + resize_visual_pos_embed(visual_state_dict, model) + # specified to EVA model + elif 'pos_embed' in visual_state_dict: + resize_eva_pos_embed(visual_state_dict, model) + + visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict) + logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}") + logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}") + + if text_checkpoint_path: + if text_tag == "eva_clip" or text_tag == "open_clip": + text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list) + elif text_tag == "clip": + text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list) + else: + text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) + + text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict) + + logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}") + logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}") + + return visual_incompatible_keys, text_incompatible_keys + +def create_model( + model_name: str, + pretrained: Optional[str] = None, + precision: str = 'fp32', + device: Union[str, torch.device] = 'cpu', + jit: bool = False, + force_quick_gelu: bool = False, + force_custom_clip: bool = False, + force_patch_dropout: Optional[float] = None, + pretrained_image: str = '', + pretrained_text: str = '', + pretrained_hf: bool = True, + pretrained_visual_model: str = None, + pretrained_text_model: str = None, + cache_dir: Optional[str] = None, + skip_list: list = [], +): + model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names + if isinstance(device, str): + device = torch.device(device) + + if pretrained and pretrained.lower() == 'openai': + logging.info(f'Loading pretrained {model_name} from OpenAI.') + model = load_openai_model( + model_name, + precision=precision, + device=device, + jit=jit, + cache_dir=cache_dir, + ) + else: + model_cfg = get_model_config(model_name) + if model_cfg is not None: + logging.info(f'Loaded {model_name} model config.') + else: + logging.error(f'Model config for {model_name} not found; available models {list_models()}.') + raise RuntimeError(f'Model config for {model_name} not found.') + + if 'rope' in model_cfg.get('vision_cfg', {}): + if model_cfg['vision_cfg']['rope']: + os.environ['RoPE'] = "1" + else: + os.environ['RoPE'] = "0" + + if force_quick_gelu: + # override for use of QuickGELU on non-OpenAI transformer models + model_cfg["quick_gelu"] = True + + if force_patch_dropout is not None: + # override the default patch dropout value + model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout + + cast_dtype = get_cast_dtype(precision) + custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg']) + + + if custom_clip: + if 'hf_model_name' in model_cfg.get('text_cfg', {}): + model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf + model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype) + else: + model = CLIP(**model_cfg, cast_dtype=cast_dtype) + + pretrained_cfg = {} + if pretrained: + checkpoint_path = '' + pretrained_cfg = get_pretrained_cfg(model_name, pretrained) + if pretrained_cfg: + checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir) + elif os.path.exists(pretrained): + checkpoint_path = pretrained + + if checkpoint_path: + logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') + load_checkpoint(model, + checkpoint_path, + model_key="model|module|state_dict", + strict=False + ) + else: + error_str = ( + f'Pretrained weights ({pretrained}) not found for model {model_name}.' + f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.') + logging.warning(error_str) + raise RuntimeError(error_str) + else: + visual_checkpoint_path = '' + text_checkpoint_path = '' + + if pretrained_image: + pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names + pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image) + if 'timm_model_name' in model_cfg.get('vision_cfg', {}): + # pretrained weight loading for timm models set via vision_cfg + model_cfg['vision_cfg']['timm_model_pretrained'] = True + elif pretrained_image_cfg: + visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir) + elif os.path.exists(pretrained_image): + visual_checkpoint_path = pretrained_image + else: + logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.') + raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.') + + if pretrained_text: + pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names + pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text) + if pretrained_image_cfg: + text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir) + elif os.path.exists(pretrained_text): + text_checkpoint_path = pretrained_text + else: + logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') + raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') + + if visual_checkpoint_path: + logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).') + if text_checkpoint_path: + logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).') + + if visual_checkpoint_path or text_checkpoint_path: + load_pretrained_checkpoint( + model, + visual_checkpoint_path, + text_checkpoint_path, + strict=False, + visual_model=pretrained_visual_model, + text_model=pretrained_text_model, + model_key="model|module|state_dict", + skip_list=skip_list + ) + + if "fp16" in precision or "bf16" in precision: + logging.info(f'convert precision to {precision}') + model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16) + + model.to(device=device) + + # set image / mean metadata from pretrained_cfg if available, or use default + model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN + model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD + + if jit: + model = torch.jit.script(model) + + return model + + +def create_model_and_transforms( + model_name: str, + pretrained: Optional[str] = None, + precision: str = 'fp32', + device: Union[str, torch.device] = 'cpu', + jit: bool = False, + force_quick_gelu: bool = False, + force_custom_clip: bool = False, + force_patch_dropout: Optional[float] = None, + pretrained_image: str = '', + pretrained_text: str = '', + pretrained_hf: bool = True, + pretrained_visual_model: str = None, + pretrained_text_model: str = None, + image_mean: Optional[Tuple[float, ...]] = None, + image_std: Optional[Tuple[float, ...]] = None, + cache_dir: Optional[str] = None, + skip_list: list = [], +): + model = create_model( + model_name, + pretrained, + precision=precision, + device=device, + jit=jit, + force_quick_gelu=force_quick_gelu, + force_custom_clip=force_custom_clip, + force_patch_dropout=force_patch_dropout, + pretrained_image=pretrained_image, + pretrained_text=pretrained_text, + pretrained_hf=pretrained_hf, + pretrained_visual_model=pretrained_visual_model, + pretrained_text_model=pretrained_text_model, + cache_dir=cache_dir, + skip_list=skip_list, + ) + + image_mean = image_mean or getattr(model.visual, 'image_mean', None) + image_std = image_std or getattr(model.visual, 'image_std', None) + preprocess_train = image_transform( + model.visual.image_size, + is_train=True, + mean=image_mean, + std=image_std + ) + preprocess_val = image_transform( + model.visual.image_size, + is_train=False, + mean=image_mean, + std=image_std + ) + + return model, preprocess_train, preprocess_val + + +def create_transforms( + model_name: str, + pretrained: Optional[str] = None, + precision: str = 'fp32', + device: Union[str, torch.device] = 'cpu', + jit: bool = False, + force_quick_gelu: bool = False, + force_custom_clip: bool = False, + force_patch_dropout: Optional[float] = None, + pretrained_image: str = '', + pretrained_text: str = '', + pretrained_hf: bool = True, + pretrained_visual_model: str = None, + pretrained_text_model: str = None, + image_mean: Optional[Tuple[float, ...]] = None, + image_std: Optional[Tuple[float, ...]] = None, + cache_dir: Optional[str] = None, + skip_list: list = [], +): + model = create_model( + model_name, + pretrained, + precision=precision, + device=device, + jit=jit, + force_quick_gelu=force_quick_gelu, + force_custom_clip=force_custom_clip, + force_patch_dropout=force_patch_dropout, + pretrained_image=pretrained_image, + pretrained_text=pretrained_text, + pretrained_hf=pretrained_hf, + pretrained_visual_model=pretrained_visual_model, + pretrained_text_model=pretrained_text_model, + cache_dir=cache_dir, + skip_list=skip_list, + ) + + + image_mean = image_mean or getattr(model.visual, 'image_mean', None) + image_std = image_std or getattr(model.visual, 'image_std', None) + preprocess_train = image_transform( + model.visual.image_size, + is_train=True, + mean=image_mean, + std=image_std + ) + preprocess_val = image_transform( + model.visual.image_size, + is_train=False, + mean=image_mean, + std=image_std + ) + del model + + return preprocess_train, preprocess_val + +def create_model_from_pretrained( + model_name: str, + pretrained: str, + precision: str = 'fp32', + device: Union[str, torch.device] = 'cpu', + jit: bool = False, + force_quick_gelu: bool = False, + force_custom_clip: bool = False, + force_patch_dropout: Optional[float] = None, + return_transform: bool = True, + image_mean: Optional[Tuple[float, ...]] = None, + image_std: Optional[Tuple[float, ...]] = None, + cache_dir: Optional[str] = None, + is_frozen: bool = False, +): + if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained): + raise RuntimeError( + f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.' + f' Use open_clip.list_pretrained() to find one.') + + model = create_model( + model_name, + pretrained, + precision=precision, + device=device, + jit=jit, + force_quick_gelu=force_quick_gelu, + force_custom_clip=force_custom_clip, + force_patch_dropout=force_patch_dropout, + cache_dir=cache_dir, + ) + + if is_frozen: + for param in model.parameters(): + param.requires_grad = False + + if not return_transform: + return model + + image_mean = image_mean or getattr(model.visual, 'image_mean', None) + image_std = image_std or getattr(model.visual, 'image_std', None) + preprocess = image_transform( + model.visual.image_size, + is_train=False, + mean=image_mean, + std=image_std + ) + + return model, preprocess diff --git a/eva_clip/hf_configs.py b/eva_clip/hf_configs.py new file mode 100644 index 0000000000000000000000000000000000000000..a8c9b704db1879676aed5cef26796303b65fe987 --- /dev/null +++ b/eva_clip/hf_configs.py @@ -0,0 +1,57 @@ +# HF architecture dict: +arch_dict = { + # https://huggingface.co/docs/transformers/model_doc/roberta#roberta + "roberta": { + "config_names": { + "context_length": "max_position_embeddings", + "vocab_size": "vocab_size", + "width": "hidden_size", + "heads": "num_attention_heads", + "layers": "num_hidden_layers", + "layer_attr": "layer", + "token_embeddings_attr": "embeddings" + }, + "pooler": "mean_pooler", + }, + # https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig + "xlm-roberta": { + "config_names": { + "context_length": "max_position_embeddings", + "vocab_size": "vocab_size", + "width": "hidden_size", + "heads": "num_attention_heads", + "layers": "num_hidden_layers", + "layer_attr": "layer", + "token_embeddings_attr": "embeddings" + }, + "pooler": "mean_pooler", + }, + # https://huggingface.co/docs/transformers/model_doc/mt5#mt5 + "mt5": { + "config_names": { + # unlimited seqlen + # https://github.com/google-research/text-to-text-transfer-transformer/issues/273 + # https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374 + "context_length": "", + "vocab_size": "vocab_size", + "width": "d_model", + "heads": "num_heads", + "layers": "num_layers", + "layer_attr": "block", + "token_embeddings_attr": "embed_tokens" + }, + "pooler": "mean_pooler", + }, + "bert": { + "config_names": { + "context_length": "max_position_embeddings", + "vocab_size": "vocab_size", + "width": "hidden_size", + "heads": "num_attention_heads", + "layers": "num_hidden_layers", + "layer_attr": "layer", + "token_embeddings_attr": "embeddings" + }, + "pooler": "mean_pooler", + } +} diff --git a/eva_clip/hf_model.py b/eva_clip/hf_model.py new file mode 100644 index 0000000000000000000000000000000000000000..c4b9fd85b4066ba31db2bda5767ed1ce15de479d --- /dev/null +++ b/eva_clip/hf_model.py @@ -0,0 +1,248 @@ +""" huggingface model adapter + +Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model. +""" + +import re + +import torch +import torch.nn as nn +from torch.nn import functional as F +from torch import TensorType +try: + import transformers + from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer, AutoConfig, PretrainedConfig + from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \ + BaseModelOutputWithPoolingAndCrossAttentions +except ImportError as e: + transformers = None + + + class BaseModelOutput: + pass + + + class PretrainedConfig: + pass + +from .hf_configs import arch_dict + +# utils +def _camel2snake(s): + return re.sub(r'(? TensorType: + # image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device) + # attn_mask = (x != self.config.pad_token_id).long() + # out = self.transformer( + # input_ids=x, + # attention_mask=attn_mask, + # encoder_hidden_states = image_embeds, + # encoder_attention_mask = image_atts, + # ) + # pooled_out = self.pooler(out, attn_mask) + + # return self.itm_proj(pooled_out) + + def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None): + if masked_indices is None: + masked_indices = torch.bernoulli(probability_matrix).bool() + + masked_indices[input_ids == self.tokenizer.pad_token_id] = False + masked_indices[input_ids == self.tokenizer.cls_token_id] = False + + if targets is not None: + targets[~masked_indices] = -100 # We only compute loss on masked tokens + + # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) + indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices + input_ids[indices_replaced] = self.tokenizer.mask_token_id + + # 10% of the time, we replace masked input tokens with random word + indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced + random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device) + input_ids[indices_random] = random_words[indices_random] + # The rest of the time (10% of the time) we keep the masked input tokens unchanged + + if targets is not None: + return input_ids, targets + else: + return input_ids + + def forward_mlm(self, input_ids, image_embeds, mlm_probability=0.25): + labels = input_ids.clone() + attn_mask = (input_ids != self.config.pad_token_id).long() + image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(input_ids.device) + vocab_size = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["vocab_size"]) + probability_matrix = torch.full(labels.shape, mlm_probability) + input_ids, labels = self.mask(input_ids, vocab_size, input_ids.device, targets=labels, + probability_matrix = probability_matrix) + mlm_output = self.transformer(input_ids, + attention_mask = attn_mask, + encoder_hidden_states = image_embeds, + encoder_attention_mask = image_atts, + return_dict = True, + labels = labels, + ) + return mlm_output.loss + # mlm_output = self.transformer(input_ids, + # attention_mask = attn_mask, + # encoder_hidden_states = image_embeds, + # encoder_attention_mask = image_atts, + # return_dict = True, + # ).last_hidden_state + # logits = self.mlm_proj(mlm_output) + + # # logits = logits[:, :-1, :].contiguous().view(-1, vocab_size) + # logits = logits[:, 1:, :].contiguous().view(-1, vocab_size) + # labels = labels[:, 1:].contiguous().view(-1) + + # mlm_loss = F.cross_entropy( + # logits, + # labels, + # # label_smoothing=0.1, + # ) + # return mlm_loss + + + def forward(self, x:TensorType) -> TensorType: + attn_mask = (x != self.config.pad_token_id).long() + out = self.transformer(input_ids=x, attention_mask=attn_mask) + pooled_out = self.pooler(out, attn_mask) + + return self.proj(pooled_out) + + def lock(self, unlocked_layers:int=0, freeze_layer_norm:bool=True): + if not unlocked_layers: # full freezing + for n, p in self.transformer.named_parameters(): + p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False + return + + encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer + layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"]) + print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model") + embeddings = getattr( + self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"]) + modules = [embeddings, *layer_list][:-unlocked_layers] + # freeze layers + for module in modules: + for n, p in module.named_parameters(): + p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False + + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.transformer.gradient_checkpointing_enable() + + def get_num_layers(self): + encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer + layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"]) + return len(layer_list) + + def init_parameters(self): + pass diff --git a/eva_clip/loss.py b/eva_clip/loss.py new file mode 100644 index 0000000000000000000000000000000000000000..473f60d98d501067e85ace2dd089b00e249b6d17 --- /dev/null +++ b/eva_clip/loss.py @@ -0,0 +1,138 @@ +import math +import torch +import torch.nn as nn +from torch.nn import functional as F + +try: + import torch.distributed.nn + from torch import distributed as dist + has_distributed = True +except ImportError: + has_distributed = False + +try: + import horovod.torch as hvd +except ImportError: + hvd = None + +from timm.loss import LabelSmoothingCrossEntropy + + +def gather_features( + image_features, + text_features, + local_loss=False, + gather_with_grad=False, + rank=0, + world_size=1, + use_horovod=False +): + assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.' + if use_horovod: + assert hvd is not None, 'Please install horovod' + if gather_with_grad: + all_image_features = hvd.allgather(image_features) + all_text_features = hvd.allgather(text_features) + else: + with torch.no_grad(): + all_image_features = hvd.allgather(image_features) + all_text_features = hvd.allgather(text_features) + if not local_loss: + # ensure grads for local rank when all_* features don't have a gradient + gathered_image_features = list(all_image_features.chunk(world_size, dim=0)) + gathered_text_features = list(all_text_features.chunk(world_size, dim=0)) + gathered_image_features[rank] = image_features + gathered_text_features[rank] = text_features + all_image_features = torch.cat(gathered_image_features, dim=0) + all_text_features = torch.cat(gathered_text_features, dim=0) + else: + # We gather tensors from all gpus + if gather_with_grad: + all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0) + all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0) + # all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features, async_op=True), dim=0) + # all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features, async_op=True), dim=0) + else: + gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)] + gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)] + dist.all_gather(gathered_image_features, image_features) + dist.all_gather(gathered_text_features, text_features) + if not local_loss: + # ensure grads for local rank when all_* features don't have a gradient + gathered_image_features[rank] = image_features + gathered_text_features[rank] = text_features + all_image_features = torch.cat(gathered_image_features, dim=0) + all_text_features = torch.cat(gathered_text_features, dim=0) + + return all_image_features, all_text_features + + +class ClipLoss(nn.Module): + + def __init__( + self, + local_loss=False, + gather_with_grad=False, + cache_labels=False, + rank=0, + world_size=1, + use_horovod=False, + smoothing=0., + ): + super().__init__() + self.local_loss = local_loss + self.gather_with_grad = gather_with_grad + self.cache_labels = cache_labels + self.rank = rank + self.world_size = world_size + self.use_horovod = use_horovod + self.label_smoothing_cross_entropy = LabelSmoothingCrossEntropy(smoothing=smoothing) if smoothing > 0 else None + + # cache state + self.prev_num_logits = 0 + self.labels = {} + + def forward(self, image_features, text_features, logit_scale=1.): + device = image_features.device + if self.world_size > 1: + all_image_features, all_text_features = gather_features( + image_features, text_features, + self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod) + + if self.local_loss: + logits_per_image = logit_scale * image_features @ all_text_features.T + logits_per_text = logit_scale * text_features @ all_image_features.T + else: + logits_per_image = logit_scale * all_image_features @ all_text_features.T + logits_per_text = logits_per_image.T + else: + logits_per_image = logit_scale * image_features @ text_features.T + logits_per_text = logit_scale * text_features @ image_features.T + # calculated ground-truth and cache if enabled + num_logits = logits_per_image.shape[0] + if self.prev_num_logits != num_logits or device not in self.labels: + labels = torch.arange(num_logits, device=device, dtype=torch.long) + if self.world_size > 1 and self.local_loss: + labels = labels + num_logits * self.rank + if self.cache_labels: + self.labels[device] = labels + self.prev_num_logits = num_logits + else: + labels = self.labels[device] + + if self.label_smoothing_cross_entropy: + total_loss = ( + self.label_smoothing_cross_entropy(logits_per_image, labels) + + self.label_smoothing_cross_entropy(logits_per_text, labels) + ) / 2 + else: + total_loss = ( + F.cross_entropy(logits_per_image, labels) + + F.cross_entropy(logits_per_text, labels) + ) / 2 + + acc = None + i2t_acc = (logits_per_image.argmax(-1) == labels).sum() / len(logits_per_image) + t2i_acc = (logits_per_text.argmax(-1) == labels).sum() / len(logits_per_text) + acc = {"i2t": i2t_acc, "t2i": t2i_acc} + return total_loss, acc \ No newline at end of file diff --git a/eva_clip/model.py b/eva_clip/model.py new file mode 100644 index 0000000000000000000000000000000000000000..dc9d9ef329b8c270cc15e6cfe4d69b021040db5c --- /dev/null +++ b/eva_clip/model.py @@ -0,0 +1,440 @@ +""" CLIP Model + +Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. +""" +import os +from dataclasses import dataclass +from typing import Optional, Tuple, Union +from functools import partial + +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn + +try: + from .hf_model import HFTextEncoder +except: + HFTextEncoder = None +from .modified_resnet import ModifiedResNet +# from .timm_model import TimmModel +from .eva_vit_model import EVAVisionTransformer +from .transformer import LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer + +try: + from apex.normalization import FusedLayerNorm +except: + FusedLayerNorm = LayerNorm + print("Please 'pip install apex'") + +try: + import xformers.ops as xops +except ImportError: + xops = None + print("Please 'pip install xformers'") + +@dataclass +class CLIPVisionCfg: + layers: Union[Tuple[int, int, int, int], int] = 12 + width: int = 768 + head_width: int = 64 + mlp_ratio: float = 4.0 + patch_size: int = 16 + image_size: Union[Tuple[int, int], int] = 224 + ls_init_value: Optional[float] = None # layer scale initial value + patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results + global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580) + drop_path_rate: Optional[float] = None # drop path rate + timm_model_name: str = None # a valid model name overrides layers, width, patch_size + timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model + timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '') + timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '') + timm_proj_bias: bool = False # enable bias final projection + eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size + qkv_bias: bool = True + fusedLN: bool = False + xattn: bool = False + postnorm: bool = False + rope: bool = False + pt_hw_seq_len: int = 16 # 224/14 + intp_freq: bool = False + naiveswiglu: bool = False + subln: bool = False + + +@dataclass +class CLIPTextCfg: + context_length: int = 77 + vocab_size: int = 49408 + width: int = 512 + heads: int = 8 + layers: int = 12 + ls_init_value: Optional[float] = None # layer scale initial value + hf_model_name: str = None + hf_tokenizer_name: str = None + hf_model_pretrained: bool = True + proj: str = 'mlp' + pooler_type: str = 'mean_pooler' + masked_language_modeling: bool = False + fusedLN: bool = False + xattn: bool = False + attn_mask: bool = True + +def get_cast_dtype(precision: str): + cast_dtype = None + if precision == 'bf16': + cast_dtype = torch.bfloat16 + elif precision == 'fp16': + cast_dtype = torch.float16 + return cast_dtype + + +def _build_vision_tower( + embed_dim: int, + vision_cfg: CLIPVisionCfg, + quick_gelu: bool = False, + cast_dtype: Optional[torch.dtype] = None +): + if isinstance(vision_cfg, dict): + vision_cfg = CLIPVisionCfg(**vision_cfg) + + # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more + # memory efficient in recent PyTorch releases (>= 1.10). + # NOTE: timm models always use native GELU regardless of quick_gelu flag. + act_layer = QuickGELU if quick_gelu else nn.GELU + + if vision_cfg.eva_model_name: + vision_heads = vision_cfg.width // vision_cfg.head_width + norm_layer = LayerNorm + + visual = EVAVisionTransformer( + img_size=vision_cfg.image_size, + patch_size=vision_cfg.patch_size, + num_classes=embed_dim, + use_mean_pooling=vision_cfg.global_average_pool, #False + init_values=vision_cfg.ls_init_value, + patch_dropout=vision_cfg.patch_dropout, + embed_dim=vision_cfg.width, + depth=vision_cfg.layers, + num_heads=vision_heads, + mlp_ratio=vision_cfg.mlp_ratio, + qkv_bias=vision_cfg.qkv_bias, + drop_path_rate=vision_cfg.drop_path_rate, + norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6), + xattn=vision_cfg.xattn, + rope=vision_cfg.rope, + postnorm=vision_cfg.postnorm, + pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14 + intp_freq= vision_cfg.intp_freq, + naiveswiglu= vision_cfg.naiveswiglu, + subln= vision_cfg.subln + ) + elif vision_cfg.timm_model_name: + # visual = TimmModel( + # vision_cfg.timm_model_name, + # pretrained=vision_cfg.timm_model_pretrained, + # pool=vision_cfg.timm_pool, + # proj=vision_cfg.timm_proj, + # proj_bias=vision_cfg.timm_proj_bias, + # embed_dim=embed_dim, + # image_size=vision_cfg.image_size + # ) + # act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models + raise ValueError + elif isinstance(vision_cfg.layers, (tuple, list)): + vision_heads = vision_cfg.width * 32 // vision_cfg.head_width + visual = ModifiedResNet( + layers=vision_cfg.layers, + output_dim=embed_dim, + heads=vision_heads, + image_size=vision_cfg.image_size, + width=vision_cfg.width + ) + else: + vision_heads = vision_cfg.width // vision_cfg.head_width + norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm + visual = VisionTransformer( + image_size=vision_cfg.image_size, + patch_size=vision_cfg.patch_size, + width=vision_cfg.width, + layers=vision_cfg.layers, + heads=vision_heads, + mlp_ratio=vision_cfg.mlp_ratio, + ls_init_value=vision_cfg.ls_init_value, + patch_dropout=vision_cfg.patch_dropout, + global_average_pool=vision_cfg.global_average_pool, + output_dim=embed_dim, + act_layer=act_layer, + norm_layer=norm_layer, + ) + + return visual + + +def _build_text_tower( + embed_dim: int, + text_cfg: CLIPTextCfg, + quick_gelu: bool = False, + cast_dtype: Optional[torch.dtype] = None, +): + if isinstance(text_cfg, dict): + text_cfg = CLIPTextCfg(**text_cfg) + + if text_cfg.hf_model_name: + text = HFTextEncoder( + text_cfg.hf_model_name, + output_dim=embed_dim, + tokenizer_name=text_cfg.hf_tokenizer_name, + proj=text_cfg.proj, + pooler_type=text_cfg.pooler_type, + masked_language_modeling=text_cfg.masked_language_modeling + ) + else: + act_layer = QuickGELU if quick_gelu else nn.GELU + norm_layer = LayerNorm + + text = TextTransformer( + context_length=text_cfg.context_length, + vocab_size=text_cfg.vocab_size, + width=text_cfg.width, + heads=text_cfg.heads, + layers=text_cfg.layers, + ls_init_value=text_cfg.ls_init_value, + output_dim=embed_dim, + act_layer=act_layer, + norm_layer= FusedLayerNorm if text_cfg.fusedLN else norm_layer, + xattn=text_cfg.xattn, + attn_mask=text_cfg.attn_mask, + ) + return text + +class CLIP(nn.Module): + def __init__( + self, + embed_dim: int, + vision_cfg: CLIPVisionCfg, + text_cfg: CLIPTextCfg, + quick_gelu: bool = False, + cast_dtype: Optional[torch.dtype] = None, + ): + super().__init__() + self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) + + text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) + self.transformer = text.transformer + self.vocab_size = text.vocab_size + self.token_embedding = text.token_embedding + self.positional_embedding = text.positional_embedding + self.ln_final = text.ln_final + self.text_projection = text.text_projection + self.register_buffer('attn_mask', text.attn_mask, persistent=False) + + self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) + + def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): + # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 + self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.visual.set_grad_checkpointing(enable) + self.transformer.grad_checkpointing = enable + + @torch.jit.ignore + def no_weight_decay(self): + return {'logit_scale'} + + def encode_image(self, image, normalize: bool = False): + features = self.visual(image) + return F.normalize(features, dim=-1) if normalize else features + + def encode_text(self, text, normalize: bool = False): + cast_dtype = self.transformer.get_cast_dtype() + + x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] + + x = x + self.positional_embedding.to(cast_dtype) + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer(x, attn_mask=self.attn_mask) + x = x.permute(1, 0, 2) # LND -> NLD + x = self.ln_final(x) # [batch_size, n_ctx, transformer.width] + # take features from the eot embedding (eot_token is the highest number in each sequence) + x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection + return F.normalize(x, dim=-1) if normalize else x + + def forward(self, image, text): + image_features = self.encode_image(image, normalize=True) + text_features = self.encode_text(text, normalize=True) + return image_features, text_features, self.logit_scale.exp() + + +class CustomCLIP(nn.Module): + def __init__( + self, + embed_dim: int, + vision_cfg: CLIPVisionCfg, + text_cfg: CLIPTextCfg, + quick_gelu: bool = False, + cast_dtype: Optional[torch.dtype] = None, + itm_task: bool = False, + ): + super().__init__() + self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) + self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) + self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) + + def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): + # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 + self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) + + def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True): + self.text.lock(unlocked_layers, freeze_layer_norm) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.visual.set_grad_checkpointing(enable) + self.text.set_grad_checkpointing(enable) + + @torch.jit.ignore + def no_weight_decay(self): + return {'logit_scale'} + + def encode_image(self, image, normalize: bool = False): + features = self.visual(image) + return F.normalize(features, dim=-1) if normalize else features + + def encode_text(self, text, normalize: bool = False): + features = self.text(text) + return F.normalize(features, dim=-1) if normalize else features + + def forward(self, image, text): + image_features = self.encode_image(image, normalize=True) + text_features = self.encode_text(text, normalize=True) + return image_features, text_features, self.logit_scale.exp() + + +def convert_weights_to_lp(model: nn.Module, dtype=torch.float16): + """Convert applicable model parameters to low-precision (bf16 or fp16)""" + + def _convert_weights(l): + + if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): + l.weight.data = l.weight.data.to(dtype) + if l.bias is not None: + l.bias.data = l.bias.data.to(dtype) + + if isinstance(l, (nn.MultiheadAttention, Attention)): + for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: + tensor = getattr(l, attr, None) + if tensor is not None: + tensor.data = tensor.data.to(dtype) + + if isinstance(l, nn.Parameter): + l.data = l.data.to(dtype) + + for name in ["text_projection", "proj"]: + if hasattr(l, name) and isinstance(l, nn.Parameter): + attr = getattr(l, name, None) + if attr is not None: + attr.data = attr.data.to(dtype) + + model.apply(_convert_weights) + + +convert_weights_to_fp16 = convert_weights_to_lp # backwards compat + + +# used to maintain checkpoint compatibility +def convert_to_custom_text_state_dict(state_dict: dict): + if 'text_projection' in state_dict: + # old format state_dict, move text tower -> .text + new_state_dict = {} + for k, v in state_dict.items(): + if any(k.startswith(p) for p in ( + 'text_projection', + 'positional_embedding', + 'token_embedding', + 'transformer', + 'ln_final', + 'logit_scale' + )): + k = 'text.' + k + new_state_dict[k] = v + return new_state_dict + return state_dict + + +def build_model_from_openai_state_dict( + state_dict: dict, + quick_gelu=True, + cast_dtype=torch.float16, +): + vit = "visual.proj" in state_dict + + if vit: + vision_width = state_dict["visual.conv1.weight"].shape[0] + vision_layers = len( + [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) + vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] + grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) + image_size = vision_patch_size * grid_size + else: + counts: list = [ + len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] + vision_layers = tuple(counts) + vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] + output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) + vision_patch_size = None + assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] + image_size = output_width * 32 + + embed_dim = state_dict["text_projection"].shape[1] + context_length = state_dict["positional_embedding"].shape[0] + vocab_size = state_dict["token_embedding.weight"].shape[0] + transformer_width = state_dict["ln_final.weight"].shape[0] + transformer_heads = transformer_width // 64 + transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) + + vision_cfg = CLIPVisionCfg( + layers=vision_layers, + width=vision_width, + patch_size=vision_patch_size, + image_size=image_size, + ) + text_cfg = CLIPTextCfg( + context_length=context_length, + vocab_size=vocab_size, + width=transformer_width, + heads=transformer_heads, + layers=transformer_layers + ) + model = CLIP( + embed_dim, + vision_cfg=vision_cfg, + text_cfg=text_cfg, + quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU + cast_dtype=cast_dtype, + ) + + for key in ["input_resolution", "context_length", "vocab_size"]: + state_dict.pop(key, None) + + convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16 + model.load_state_dict(state_dict) + return model.eval() + + +def trace_model(model, batch_size=256, device=torch.device('cpu')): + model.eval() + image_size = model.visual.image_size + example_images = torch.ones((batch_size, 3, image_size, image_size), device=device) + example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device) + model = torch.jit.trace_module( + model, + inputs=dict( + forward=(example_images, example_text), + encode_text=(example_text,), + encode_image=(example_images,) + )) + model.visual.image_size = image_size + return model diff --git a/eva_clip/model_configs/EVA01-CLIP-B-16.json b/eva_clip/model_configs/EVA01-CLIP-B-16.json new file mode 100644 index 0000000000000000000000000000000000000000..aad2058003962a4ab286bf4e1ae956288af34e62 --- /dev/null +++ b/eva_clip/model_configs/EVA01-CLIP-B-16.json @@ -0,0 +1,19 @@ +{ + "embed_dim": 512, + "vision_cfg": { + "image_size": 224, + "layers": 12, + "width": 768, + "patch_size": 16, + "eva_model_name": "eva-clip-b-16", + "ls_init_value": 0.1, + "drop_path_rate": 0.0 + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/eva_clip/model_configs/EVA01-CLIP-g-14-plus.json b/eva_clip/model_configs/EVA01-CLIP-g-14-plus.json new file mode 100644 index 0000000000000000000000000000000000000000..100279572ff6d1bcca601f0eb526b4d4ff174c7d --- /dev/null +++ b/eva_clip/model_configs/EVA01-CLIP-g-14-plus.json @@ -0,0 +1,24 @@ +{ + "embed_dim": 1024, + "vision_cfg": { + "image_size": 224, + "layers": 40, + "width": 1408, + "head_width": 88, + "mlp_ratio": 4.3637, + "patch_size": 14, + "eva_model_name": "eva-clip-g-14-x", + "drop_path_rate": 0, + "xattn": true, + "fusedLN": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 1024, + "heads": 16, + "layers": 24, + "xattn": false, + "fusedLN": true + } +} \ No newline at end of file diff --git a/eva_clip/model_configs/EVA01-CLIP-g-14.json b/eva_clip/model_configs/EVA01-CLIP-g-14.json new file mode 100644 index 0000000000000000000000000000000000000000..5d338b4e6104241d1f0304ee82400035d5385332 --- /dev/null +++ b/eva_clip/model_configs/EVA01-CLIP-g-14.json @@ -0,0 +1,24 @@ +{ + "embed_dim": 1024, + "vision_cfg": { + "image_size": 224, + "layers": 40, + "width": 1408, + "head_width": 88, + "mlp_ratio": 4.3637, + "patch_size": 14, + "eva_model_name": "eva-clip-g-14-x", + "drop_path_rate": 0.4, + "xattn": true, + "fusedLN": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 768, + "heads": 12, + "layers": 12, + "xattn": false, + "fusedLN": true + } +} \ No newline at end of file diff --git a/eva_clip/model_configs/EVA02-CLIP-B-16.json b/eva_clip/model_configs/EVA02-CLIP-B-16.json new file mode 100644 index 0000000000000000000000000000000000000000..e4a6e723f77033caa341ddf9b5be1787d64ad42c --- /dev/null +++ b/eva_clip/model_configs/EVA02-CLIP-B-16.json @@ -0,0 +1,29 @@ +{ + "embed_dim": 512, + "vision_cfg": { + "image_size": 224, + "layers": 12, + "width": 768, + "head_width": 64, + "patch_size": 16, + "mlp_ratio": 2.6667, + "eva_model_name": "eva-clip-b-16-X", + "drop_path_rate": 0.0, + "xattn": true, + "fusedLN": true, + "rope": true, + "pt_hw_seq_len": 16, + "intp_freq": true, + "naiveswiglu": true, + "subln": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12, + "xattn": true, + "fusedLN": true + } +} \ No newline at end of file diff --git a/eva_clip/model_configs/EVA02-CLIP-L-14-336.json b/eva_clip/model_configs/EVA02-CLIP-L-14-336.json new file mode 100644 index 0000000000000000000000000000000000000000..3e1d124e1118911c5ad7b1ce85df195aca363ac4 --- /dev/null +++ b/eva_clip/model_configs/EVA02-CLIP-L-14-336.json @@ -0,0 +1,29 @@ +{ + "embed_dim": 768, + "vision_cfg": { + "image_size": 336, + "layers": 24, + "width": 1024, + "drop_path_rate": 0, + "head_width": 64, + "mlp_ratio": 2.6667, + "patch_size": 14, + "eva_model_name": "eva-clip-l-14-336", + "xattn": true, + "fusedLN": true, + "rope": true, + "pt_hw_seq_len": 16, + "intp_freq": true, + "naiveswiglu": true, + "subln": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 768, + "heads": 12, + "layers": 12, + "xattn": false, + "fusedLN": true + } +} \ No newline at end of file diff --git a/eva_clip/model_configs/EVA02-CLIP-L-14.json b/eva_clip/model_configs/EVA02-CLIP-L-14.json new file mode 100644 index 0000000000000000000000000000000000000000..03b22ad3cfb92f9c843b9ec8d672e57e7a9ba4a2 --- /dev/null +++ b/eva_clip/model_configs/EVA02-CLIP-L-14.json @@ -0,0 +1,29 @@ +{ + "embed_dim": 768, + "vision_cfg": { + "image_size": 224, + "layers": 24, + "width": 1024, + "drop_path_rate": 0, + "head_width": 64, + "mlp_ratio": 2.6667, + "patch_size": 14, + "eva_model_name": "eva-clip-l-14", + "xattn": true, + "fusedLN": true, + "rope": true, + "pt_hw_seq_len": 16, + "intp_freq": true, + "naiveswiglu": true, + "subln": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 768, + "heads": 12, + "layers": 12, + "xattn": false, + "fusedLN": true + } +} \ No newline at end of file diff --git a/eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json b/eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json new file mode 100644 index 0000000000000000000000000000000000000000..aa04e2545ac1e015daae2c10133956ce969524f7 --- /dev/null +++ b/eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json @@ -0,0 +1,25 @@ +{ + "embed_dim": 1024, + "vision_cfg": { + "image_size": 224, + "layers": 64, + "width": 1792, + "head_width": 112, + "mlp_ratio": 8.571428571428571, + "patch_size": 14, + "eva_model_name": "eva-clip-4b-14-x", + "drop_path_rate": 0, + "xattn": true, + "postnorm": true, + "fusedLN": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 1280, + "heads": 20, + "layers": 32, + "xattn": false, + "fusedLN": true + } +} diff --git a/eva_clip/model_configs/EVA02-CLIP-bigE-14.json b/eva_clip/model_configs/EVA02-CLIP-bigE-14.json new file mode 100644 index 0000000000000000000000000000000000000000..747ffccc8bd49dbb6701b58e15843b7fe3754e64 --- /dev/null +++ b/eva_clip/model_configs/EVA02-CLIP-bigE-14.json @@ -0,0 +1,25 @@ +{ + "embed_dim": 1024, + "vision_cfg": { + "image_size": 224, + "layers": 64, + "width": 1792, + "head_width": 112, + "mlp_ratio": 8.571428571428571, + "patch_size": 14, + "eva_model_name": "eva-clip-4b-14-x", + "drop_path_rate": 0, + "xattn": true, + "postnorm": true, + "fusedLN": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 1024, + "heads": 16, + "layers": 24, + "xattn": false, + "fusedLN": true + } +} \ No newline at end of file diff --git a/eva_clip/modified_resnet.py b/eva_clip/modified_resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..151bfdd0b052d3db1b160d8b2299c33a6e944a4b --- /dev/null +++ b/eva_clip/modified_resnet.py @@ -0,0 +1,181 @@ +from collections import OrderedDict + +import torch +from torch import nn +from torch.nn import functional as F + +from eva_clip.utils import freeze_batch_norm_2d + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1): + super().__init__() + + # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 + self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + self.act1 = nn.ReLU(inplace=True) + + self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + self.act2 = nn.ReLU(inplace=True) + + self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() + + self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * self.expansion) + self.act3 = nn.ReLU(inplace=True) + + self.downsample = None + self.stride = stride + + if stride > 1 or inplanes != planes * Bottleneck.expansion: + # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 + self.downsample = nn.Sequential(OrderedDict([ + ("-1", nn.AvgPool2d(stride)), + ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), + ("1", nn.BatchNorm2d(planes * self.expansion)) + ])) + + def forward(self, x: torch.Tensor): + identity = x + + out = self.act1(self.bn1(self.conv1(x))) + out = self.act2(self.bn2(self.conv2(out))) + out = self.avgpool(out) + out = self.bn3(self.conv3(out)) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.act3(out) + return out + + +class AttentionPool2d(nn.Module): + def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): + super().__init__() + self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) + self.k_proj = nn.Linear(embed_dim, embed_dim) + self.q_proj = nn.Linear(embed_dim, embed_dim) + self.v_proj = nn.Linear(embed_dim, embed_dim) + self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) + self.num_heads = num_heads + + def forward(self, x): + x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC + x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC + x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC + x, _ = F.multi_head_attention_forward( + query=x, key=x, value=x, + embed_dim_to_check=x.shape[-1], + num_heads=self.num_heads, + q_proj_weight=self.q_proj.weight, + k_proj_weight=self.k_proj.weight, + v_proj_weight=self.v_proj.weight, + in_proj_weight=None, + in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), + bias_k=None, + bias_v=None, + add_zero_attn=False, + dropout_p=0., + out_proj_weight=self.c_proj.weight, + out_proj_bias=self.c_proj.bias, + use_separate_proj_weight=True, + training=self.training, + need_weights=False + ) + + return x[0] + + +class ModifiedResNet(nn.Module): + """ + A ResNet class that is similar to torchvision's but contains the following changes: + - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. + - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 + - The final pooling layer is a QKV attention instead of an average pool + """ + + def __init__(self, layers, output_dim, heads, image_size=224, width=64): + super().__init__() + self.output_dim = output_dim + self.image_size = image_size + + # the 3-layer stem + self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(width // 2) + self.act1 = nn.ReLU(inplace=True) + self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(width // 2) + self.act2 = nn.ReLU(inplace=True) + self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) + self.bn3 = nn.BatchNorm2d(width) + self.act3 = nn.ReLU(inplace=True) + self.avgpool = nn.AvgPool2d(2) + + # residual layers + self._inplanes = width # this is a *mutable* variable used during construction + self.layer1 = self._make_layer(width, layers[0]) + self.layer2 = self._make_layer(width * 2, layers[1], stride=2) + self.layer3 = self._make_layer(width * 4, layers[2], stride=2) + self.layer4 = self._make_layer(width * 8, layers[3], stride=2) + + embed_dim = width * 32 # the ResNet feature dimension + self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim) + + self.init_parameters() + + def _make_layer(self, planes, blocks, stride=1): + layers = [Bottleneck(self._inplanes, planes, stride)] + + self._inplanes = planes * Bottleneck.expansion + for _ in range(1, blocks): + layers.append(Bottleneck(self._inplanes, planes)) + + return nn.Sequential(*layers) + + def init_parameters(self): + if self.attnpool is not None: + std = self.attnpool.c_proj.in_features ** -0.5 + nn.init.normal_(self.attnpool.q_proj.weight, std=std) + nn.init.normal_(self.attnpool.k_proj.weight, std=std) + nn.init.normal_(self.attnpool.v_proj.weight, std=std) + nn.init.normal_(self.attnpool.c_proj.weight, std=std) + + for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]: + for name, param in resnet_block.named_parameters(): + if name.endswith("bn3.weight"): + nn.init.zeros_(param) + + def lock(self, unlocked_groups=0, freeze_bn_stats=False): + assert unlocked_groups == 0, 'partial locking not currently supported for this model' + for param in self.parameters(): + param.requires_grad = False + if freeze_bn_stats: + freeze_batch_norm_2d(self) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + # FIXME support for non-transformer + pass + + def stem(self, x): + x = self.act1(self.bn1(self.conv1(x))) + x = self.act2(self.bn2(self.conv2(x))) + x = self.act3(self.bn3(self.conv3(x))) + x = self.avgpool(x) + return x + + def forward(self, x): + x = self.stem(x) + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + x = self.attnpool(x) + + return x diff --git a/eva_clip/openai.py b/eva_clip/openai.py new file mode 100644 index 0000000000000000000000000000000000000000..cc4e13e876d6a7a3463b457e62c517cb063b1356 --- /dev/null +++ b/eva_clip/openai.py @@ -0,0 +1,144 @@ +""" OpenAI pretrained model functions + +Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. +""" + +import os +import warnings +from typing import List, Optional, Union + +import torch + +from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype +from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url + +__all__ = ["list_openai_models", "load_openai_model"] + + +def list_openai_models() -> List[str]: + """Returns the names of available CLIP models""" + return list_pretrained_models_by_tag('openai') + + +def load_openai_model( + name: str, + precision: Optional[str] = None, + device: Optional[Union[str, torch.device]] = None, + jit: bool = True, + cache_dir: Optional[str] = None, +): + """Load a CLIP model + + Parameters + ---------- + name : str + A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict + precision: str + Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'. + device : Union[str, torch.device] + The device to put the loaded model + jit : bool + Whether to load the optimized JIT model (default) or more hackable non-JIT model. + cache_dir : Optional[str] + The directory to cache the downloaded model weights + + Returns + ------- + model : torch.nn.Module + The CLIP model + preprocess : Callable[[PIL.Image], torch.Tensor] + A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input + """ + if device is None: + device = "cuda" if torch.cuda.is_available() else "cpu" + if precision is None: + precision = 'fp32' if device == 'cpu' else 'fp16' + + if get_pretrained_url(name, 'openai'): + model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir) + elif os.path.isfile(name): + model_path = name + else: + raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}") + + try: + # loading JIT archive + model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() + state_dict = None + except RuntimeError: + # loading saved state dict + if jit: + warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") + jit = False + state_dict = torch.load(model_path, map_location="cpu") + + if not jit: + # Build a non-jit model from the OpenAI jitted model state dict + cast_dtype = get_cast_dtype(precision) + try: + model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype) + except KeyError: + sd = {k[7:]: v for k, v in state_dict["state_dict"].items()} + model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype) + + # model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use + model = model.to(device) + if precision.startswith('amp') or precision == 'fp32': + model.float() + elif precision == 'bf16': + convert_weights_to_lp(model, dtype=torch.bfloat16) + + return model + + # patch the device names + device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) + device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] + + def patch_device(module): + try: + graphs = [module.graph] if hasattr(module, "graph") else [] + except RuntimeError: + graphs = [] + + if hasattr(module, "forward1"): + graphs.append(module.forward1.graph) + + for graph in graphs: + for node in graph.findAllNodes("prim::Constant"): + if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): + node.copyAttributes(device_node) + + model.apply(patch_device) + patch_device(model.encode_image) + patch_device(model.encode_text) + + # patch dtype to float32 (typically for CPU) + if precision == 'fp32': + float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) + float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] + float_node = float_input.node() + + def patch_float(module): + try: + graphs = [module.graph] if hasattr(module, "graph") else [] + except RuntimeError: + graphs = [] + + if hasattr(module, "forward1"): + graphs.append(module.forward1.graph) + + for graph in graphs: + for node in graph.findAllNodes("aten::to"): + inputs = list(node.inputs()) + for i in [1, 2]: # dtype can be the second or third argument to aten::to() + if inputs[i].node()["value"] == 5: + inputs[i].node().copyAttributes(float_node) + + model.apply(patch_float) + patch_float(model.encode_image) + patch_float(model.encode_text) + model.float() + + # ensure image_size attr available at consistent location for both jit and non-jit + model.visual.image_size = model.input_resolution.item() + return model diff --git a/eva_clip/pretrained.py b/eva_clip/pretrained.py new file mode 100644 index 0000000000000000000000000000000000000000..a1e55dcf36a0e7dbd4c13b4ca2d7cb460e4c3547 --- /dev/null +++ b/eva_clip/pretrained.py @@ -0,0 +1,332 @@ +import hashlib +import os +import urllib +import warnings +from functools import partial +from typing import Dict, Union + +from tqdm import tqdm + +try: + from huggingface_hub import hf_hub_download + _has_hf_hub = True +except ImportError: + hf_hub_download = None + _has_hf_hub = False + + +def _pcfg(url='', hf_hub='', filename='', mean=None, std=None): + return dict( + url=url, + hf_hub=hf_hub, + mean=mean, + std=std, + ) + +_VITB32 = dict( + openai=_pcfg( + "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"), + laion400m_e31=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"), + laion400m_e32=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"), + laion2b_e16=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"), + laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/') +) + +_VITB32_quickgelu = dict( + openai=_pcfg( + "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"), + laion400m_e31=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"), + laion400m_e32=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"), +) + +_VITB16 = dict( + openai=_pcfg( + "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"), + laion400m_e31=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"), + laion400m_e32=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"), + laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'), +) + +_EVAB16 = dict( + eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'), + eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'), + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'), + eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'), +) + +_VITB16_PLUS_240 = dict( + laion400m_e31=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"), + laion400m_e32=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"), +) + +_VITL14 = dict( + openai=_pcfg( + "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"), + laion400m_e31=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"), + laion400m_e32=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"), + laion2b_s32b_b82k=_pcfg( + hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), +) + +_EVAL14 = dict( + eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'), + eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'), + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'), + eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'), +) + +_VITL14_336 = dict( + openai=_pcfg( + "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"), +) + +_EVAL14_336 = dict( + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'), + eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'), + eva_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'), + eva02_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'), +) + +_VITH14 = dict( + laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'), +) + +_VITg14 = dict( + laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'), + laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'), +) + +_EVAg14 = dict( + eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'), + eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'), + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'), + eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'), +) + +_EVAg14_PLUS = dict( + eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'), + eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'), + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'), + eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'), +) + +_VITbigG14 = dict( + laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'), +) + +_EVAbigE14 = dict( + eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'), + eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'), + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'), + eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'), +) + +_EVAbigE14_PLUS = dict( + eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'), + eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'), + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'), + eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'), +) + + +_PRETRAINED = { + # "ViT-B-32": _VITB32, + "OpenaiCLIP-B-32": _VITB32, + "OpenCLIP-B-32": _VITB32, + + # "ViT-B-32-quickgelu": _VITB32_quickgelu, + "OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu, + "OpenCLIP-B-32-quickgelu": _VITB32_quickgelu, + + # "ViT-B-16": _VITB16, + "OpenaiCLIP-B-16": _VITB16, + "OpenCLIP-B-16": _VITB16, + + "EVA02-B-16": _EVAB16, + "EVA02-CLIP-B-16": _EVAB16, + + # "ViT-B-16-plus-240": _VITB16_PLUS_240, + "OpenCLIP-B-16-plus-240": _VITB16_PLUS_240, + + # "ViT-L-14": _VITL14, + "OpenaiCLIP-L-14": _VITL14, + "OpenCLIP-L-14": _VITL14, + + "EVA02-L-14": _EVAL14, + "EVA02-CLIP-L-14": _EVAL14, + + # "ViT-L-14-336": _VITL14_336, + "OpenaiCLIP-L-14-336": _VITL14_336, + + "EVA02-CLIP-L-14-336": _EVAL14_336, + + # "ViT-H-14": _VITH14, + # "ViT-g-14": _VITg14, + "OpenCLIP-H-14": _VITH14, + "OpenCLIP-g-14": _VITg14, + + "EVA01-CLIP-g-14": _EVAg14, + "EVA01-CLIP-g-14-plus": _EVAg14_PLUS, + + # "ViT-bigG-14": _VITbigG14, + "OpenCLIP-bigG-14": _VITbigG14, + + "EVA02-CLIP-bigE-14": _EVAbigE14, + "EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS, +} + + +def _clean_tag(tag: str): + # normalize pretrained tags + return tag.lower().replace('-', '_') + + +def list_pretrained(as_str: bool = False): + """ returns list of pretrained models + Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True + """ + return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()] + + +def list_pretrained_models_by_tag(tag: str): + """ return all models having the specified pretrain tag """ + models = [] + tag = _clean_tag(tag) + for k in _PRETRAINED.keys(): + if tag in _PRETRAINED[k]: + models.append(k) + return models + + +def list_pretrained_tags_by_model(model: str): + """ return all pretrain tags for the specified model architecture """ + tags = [] + if model in _PRETRAINED: + tags.extend(_PRETRAINED[model].keys()) + return tags + + +def is_pretrained_cfg(model: str, tag: str): + if model not in _PRETRAINED: + return False + return _clean_tag(tag) in _PRETRAINED[model] + + +def get_pretrained_cfg(model: str, tag: str): + if model not in _PRETRAINED: + return {} + model_pretrained = _PRETRAINED[model] + return model_pretrained.get(_clean_tag(tag), {}) + + +def get_pretrained_url(model: str, tag: str): + cfg = get_pretrained_cfg(model, _clean_tag(tag)) + return cfg.get('url', '') + + +def download_pretrained_from_url( + url: str, + cache_dir: Union[str, None] = None, +): + if not cache_dir: + cache_dir = os.path.expanduser("~/.cache/clip") + os.makedirs(cache_dir, exist_ok=True) + filename = os.path.basename(url) + + if 'openaipublic' in url: + expected_sha256 = url.split("/")[-2] + elif 'mlfoundations' in url: + expected_sha256 = os.path.splitext(filename)[0].split("-")[-1] + else: + expected_sha256 = '' + + download_target = os.path.join(cache_dir, filename) + + if os.path.exists(download_target) and not os.path.isfile(download_target): + raise RuntimeError(f"{download_target} exists and is not a regular file") + + if os.path.isfile(download_target): + if expected_sha256: + if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256): + return download_target + else: + warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") + else: + return download_target + + with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: + with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop: + while True: + buffer = source.read(8192) + if not buffer: + break + + output.write(buffer) + loop.update(len(buffer)) + + if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256): + raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") + + return download_target + + +def has_hf_hub(necessary=False): + if not _has_hf_hub and necessary: + # if no HF Hub module installed, and it is necessary to continue, raise error + raise RuntimeError( + 'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.') + return _has_hf_hub + + +def download_pretrained_from_hf( + model_id: str, + filename: str = 'open_clip_pytorch_model.bin', + revision=None, + cache_dir: Union[str, None] = None, +): + has_hf_hub(True) + cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir) + return cached_file + + +def download_pretrained( + cfg: Dict, + force_hf_hub: bool = False, + cache_dir: Union[str, None] = None, +): + target = '' + if not cfg: + return target + + download_url = cfg.get('url', '') + download_hf_hub = cfg.get('hf_hub', '') + if download_hf_hub and force_hf_hub: + # use HF hub even if url exists + download_url = '' + + if download_url: + target = download_pretrained_from_url(download_url, cache_dir=cache_dir) + elif download_hf_hub: + has_hf_hub(True) + # we assume the hf_hub entries in pretrained config combine model_id + filename in + # 'org/model_name/filename.pt' form. To specify just the model id w/o filename and + # use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'. + model_id, filename = os.path.split(download_hf_hub) + if filename: + target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir) + else: + target = download_pretrained_from_hf(model_id, cache_dir=cache_dir) + + return target diff --git a/eva_clip/rope.py b/eva_clip/rope.py new file mode 100644 index 0000000000000000000000000000000000000000..69030c35ea7b6b4f298daebbee5717f3fa1254ab --- /dev/null +++ b/eva_clip/rope.py @@ -0,0 +1,137 @@ +from math import pi +import torch +from torch import nn +from einops import rearrange, repeat +import logging + +def broadcat(tensors, dim = -1): + num_tensors = len(tensors) + shape_lens = set(list(map(lambda t: len(t.shape), tensors))) + assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions' + shape_len = list(shape_lens)[0] + dim = (dim + shape_len) if dim < 0 else dim + dims = list(zip(*map(lambda t: list(t.shape), tensors))) + expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] + assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation' + max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) + expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) + expanded_dims.insert(dim, (dim, dims[dim])) + expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) + tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) + return torch.cat(tensors, dim = dim) + +def rotate_half(x): + x = rearrange(x, '... (d r) -> ... d r', r = 2) + x1, x2 = x.unbind(dim = -1) + x = torch.stack((-x2, x1), dim = -1) + return rearrange(x, '... d r -> ... (d r)') + + +class VisionRotaryEmbedding(nn.Module): + def __init__( + self, + dim, + pt_seq_len, + ft_seq_len=None, + custom_freqs = None, + freqs_for = 'lang', + theta = 10000, + max_freq = 10, + num_freqs = 1, + ): + super().__init__() + if custom_freqs: + freqs = custom_freqs + elif freqs_for == 'lang': + freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)) + elif freqs_for == 'pixel': + freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi + elif freqs_for == 'constant': + freqs = torch.ones(num_freqs).float() + else: + raise ValueError(f'unknown modality {freqs_for}') + + if ft_seq_len is None: ft_seq_len = pt_seq_len + t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len + + freqs_h = torch.einsum('..., f -> ... f', t, freqs) + freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2) + + freqs_w = torch.einsum('..., f -> ... f', t, freqs) + freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2) + + freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1) + + self.register_buffer("freqs_cos", freqs.cos()) + self.register_buffer("freqs_sin", freqs.sin()) + + logging.info(f'Shape of rope freq: {self.freqs_cos.shape}') + + def forward(self, t, start_index = 0): + rot_dim = self.freqs_cos.shape[-1] + end_index = start_index + rot_dim + assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}' + t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:] + t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin) + + return torch.cat((t_left, t, t_right), dim = -1) + +class VisionRotaryEmbeddingFast(nn.Module): + def __init__( + self, + dim, + pt_seq_len, + ft_seq_len=None, + custom_freqs = None, + freqs_for = 'lang', + theta = 10000, + max_freq = 10, + num_freqs = 1, + patch_dropout = 0. + ): + super().__init__() + if custom_freqs: + freqs = custom_freqs + elif freqs_for == 'lang': + freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)) + elif freqs_for == 'pixel': + freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi + elif freqs_for == 'constant': + freqs = torch.ones(num_freqs).float() + else: + raise ValueError(f'unknown modality {freqs_for}') + + if ft_seq_len is None: ft_seq_len = pt_seq_len + t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len + + freqs = torch.einsum('..., f -> ... f', t, freqs) + freqs = repeat(freqs, '... n -> ... (n r)', r = 2) + freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1) + + freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) + freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) + + self.patch_dropout = patch_dropout + + self.register_buffer("freqs_cos", freqs_cos) + self.register_buffer("freqs_sin", freqs_sin) + + logging.info(f'Shape of rope freq: {self.freqs_cos.shape}') + + def forward(self, t, patch_indices_keep=None): + if patch_indices_keep is not None: + batch = t.size()[0] + batch_indices = torch.arange(batch) + batch_indices = batch_indices[..., None] + + freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]) + freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]) + + freqs_cos = freqs_cos[batch_indices, patch_indices_keep] + freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j') + freqs_sin = freqs_sin[batch_indices, patch_indices_keep] + freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j') + + return t * freqs_cos + rotate_half(t) * freqs_sin + + return t * self.freqs_cos + rotate_half(t) * self.freqs_sin \ No newline at end of file diff --git a/eva_clip/timm_model.py b/eva_clip/timm_model.py new file mode 100644 index 0000000000000000000000000000000000000000..26d476543f4d2e87d2c7e78dac89cc16f3b1abb5 --- /dev/null +++ b/eva_clip/timm_model.py @@ -0,0 +1,123 @@ +""" timm model adapter + +Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model. +""" +import logging +from collections import OrderedDict + +import torch +import torch.nn as nn + +try: + import timm + from timm.models.layers import Mlp, to_2tuple + try: + # old timm imports < 0.8.1 + from timm.models.layers.attention_pool2d import RotAttentionPool2d + from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d + except ImportError: + # new timm imports >= 0.8.1 + from timm.layers import RotAttentionPool2d + from timm.layers import AttentionPool2d as AbsAttentionPool2d +except ImportError: + timm = None + +from .utils import freeze_batch_norm_2d + + +class TimmModel(nn.Module): + """ timm model adapter + # FIXME this adapter is a work in progress, may change in ways that break weight compat + """ + + def __init__( + self, + model_name, + embed_dim, + image_size=224, + pool='avg', + proj='linear', + proj_bias=False, + drop=0., + pretrained=False): + super().__init__() + if timm is None: + # raise RuntimeError("Please `pip install timm` to use timm models.") + return + + self.image_size = to_2tuple(image_size) + self.trunk = timm.create_model(model_name, pretrained=pretrained) + feat_size = self.trunk.default_cfg.get('pool_size', None) + feature_ndim = 1 if not feat_size else 2 + if pool in ('abs_attn', 'rot_attn'): + assert feature_ndim == 2 + # if attn pooling used, remove both classifier and default pool + self.trunk.reset_classifier(0, global_pool='') + else: + # reset global pool if pool config set, otherwise leave as network default + reset_kwargs = dict(global_pool=pool) if pool else {} + self.trunk.reset_classifier(0, **reset_kwargs) + prev_chs = self.trunk.num_features + + head_layers = OrderedDict() + if pool == 'abs_attn': + head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim) + prev_chs = embed_dim + elif pool == 'rot_attn': + head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim) + prev_chs = embed_dim + else: + assert proj, 'projection layer needed if non-attention pooling is used.' + + # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used + if proj == 'linear': + head_layers['drop'] = nn.Dropout(drop) + head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias) + elif proj == 'mlp': + head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop, bias=(True, proj_bias)) + + self.head = nn.Sequential(head_layers) + + def lock(self, unlocked_groups=0, freeze_bn_stats=False): + """ lock modules + Args: + unlocked_groups (int): leave last n layer groups unlocked (default: 0) + """ + if not unlocked_groups: + # lock full model + for param in self.trunk.parameters(): + param.requires_grad = False + if freeze_bn_stats: + freeze_batch_norm_2d(self.trunk) + else: + # NOTE: partial freeze requires latest timm (master) branch and is subject to change + try: + # FIXME import here until API stable and in an official release + from timm.models.helpers import group_parameters, group_modules + except ImportError: + raise RuntimeError( + 'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`') + matcher = self.trunk.group_matcher() + gparams = group_parameters(self.trunk, matcher) + max_layer_id = max(gparams.keys()) + max_layer_id = max_layer_id - unlocked_groups + for group_idx in range(max_layer_id + 1): + group = gparams[group_idx] + for param in group: + self.trunk.get_parameter(param).requires_grad = False + if freeze_bn_stats: + gmodules = group_modules(self.trunk, matcher, reverse=True) + gmodules = {k for k, v in gmodules.items() if v <= max_layer_id} + freeze_batch_norm_2d(self.trunk, gmodules) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + try: + self.trunk.set_grad_checkpointing(enable) + except Exception as e: + logging.warning('grad checkpointing not supported for this timm image tower, continuing without...') + + def forward(self, x): + x = self.trunk(x) + x = self.head(x) + return x diff --git a/eva_clip/tokenizer.py b/eva_clip/tokenizer.py new file mode 100644 index 0000000000000000000000000000000000000000..41482f82aebbf197f4ee4e6c07c845a0d69dd7d6 --- /dev/null +++ b/eva_clip/tokenizer.py @@ -0,0 +1,201 @@ +""" CLIP tokenizer + +Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. +""" +import gzip +import html +import os +from functools import lru_cache +from typing import Union, List + +import ftfy +import regex as re +import torch + +# https://stackoverflow.com/q/62691279 +import os +os.environ["TOKENIZERS_PARALLELISM"] = "false" + + +@lru_cache() +def default_bpe(): + return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") + + +@lru_cache() +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a corresponding list of unicode strings. + The reversible bpe codes work on unicode strings. + This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. + When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. + This is a signficant percentage of your normal, say, 32K bpe vocab. + To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + And avoids mapping to whitespace/control characters the bpe code barfs on. + """ + bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8+n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +def get_pairs(word): + """Return set of symbol pairs in a word. + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +def basic_clean(text): + text = ftfy.fix_text(text) + text = html.unescape(html.unescape(text)) + return text.strip() + + +def whitespace_clean(text): + text = re.sub(r'\s+', ' ', text) + text = text.strip() + return text + + +class SimpleTokenizer(object): + def __init__(self, bpe_path: str = default_bpe(), special_tokens=None): + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') + merges = merges[1:49152-256-2+1] + merges = [tuple(merge.split()) for merge in merges] + vocab = list(bytes_to_unicode().values()) + vocab = vocab + [v+'' for v in vocab] + for merge in merges: + vocab.append(''.join(merge)) + if not special_tokens: + special_tokens = ['', ''] + else: + special_tokens = ['', ''] + special_tokens + vocab.extend(special_tokens) + self.encoder = dict(zip(vocab, range(len(vocab)))) + self.decoder = {v: k for k, v in self.encoder.items()} + self.bpe_ranks = dict(zip(merges, range(len(merges)))) + self.cache = {t:t for t in special_tokens} + special = "|".join(special_tokens) + self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) + + self.vocab_size = len(self.encoder) + self.all_special_ids = [self.encoder[t] for t in special_tokens] + + def bpe(self, token): + if token in self.cache: + return self.cache[token] + word = tuple(token[:-1]) + ( token[-1] + '',) + pairs = get_pairs(word) + + if not pairs: + return token+'' + + while True: + bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + new_word.extend(word[i:j]) + i = j + except: + new_word.extend(word[i:]) + break + + if word[i] == first and i < len(word)-1 and word[i+1] == second: + new_word.append(first+second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = ' '.join(word) + self.cache[token] = word + return word + + def encode(self, text): + bpe_tokens = [] + text = whitespace_clean(basic_clean(text)).lower() + for token in re.findall(self.pat, text): + token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) + bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) + return bpe_tokens + + def decode(self, tokens): + text = ''.join([self.decoder[token] for token in tokens]) + text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ') + return text + + +_tokenizer = SimpleTokenizer() + + +def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor: + """ + Returns the tokenized representation of given input string(s) + + Parameters + ---------- + texts : Union[str, List[str]] + An input string or a list of input strings to tokenize + context_length : int + The context length to use; all CLIP models use 77 as the context length + + Returns + ------- + A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] + """ + if isinstance(texts, str): + texts = [texts] + + sot_token = _tokenizer.encoder[""] + eot_token = _tokenizer.encoder[""] + all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] + result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) + + for i, tokens in enumerate(all_tokens): + if len(tokens) > context_length: + tokens = tokens[:context_length] # Truncate + tokens[-1] = eot_token + result[i, :len(tokens)] = torch.tensor(tokens) + + return result + + +class HFTokenizer: + "HuggingFace tokenizer wrapper" + def __init__(self, tokenizer_name:str): + from transformers import AutoTokenizer + self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) + + def __call__(self, texts:Union[str, List[str]], context_length:int=77) -> torch.Tensor: + # same cleaning as for default tokenizer, except lowercasing + # adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance + if isinstance(texts, str): + texts = [texts] + texts = [whitespace_clean(basic_clean(text)) for text in texts] + input_ids = self.tokenizer(texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True).input_ids + return input_ids diff --git a/eva_clip/transform.py b/eva_clip/transform.py new file mode 100644 index 0000000000000000000000000000000000000000..39f3e4cf6cf9985131ae2ef254b59540904b02e7 --- /dev/null +++ b/eva_clip/transform.py @@ -0,0 +1,103 @@ +from typing import Optional, Sequence, Tuple + +import torch +import torch.nn as nn +import torchvision.transforms.functional as F + +from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \ + CenterCrop + +from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD + + +class ResizeMaxSize(nn.Module): + + def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0): + super().__init__() + if not isinstance(max_size, int): + raise TypeError(f"Size should be int. Got {type(max_size)}") + self.max_size = max_size + self.interpolation = interpolation + self.fn = min if fn == 'min' else min + self.fill = fill + + def forward(self, img): + if isinstance(img, torch.Tensor): + height, width = img.shape[:2] + else: + width, height = img.size + scale = self.max_size / float(max(height, width)) + if scale != 1.0: + new_size = tuple(round(dim * scale) for dim in (height, width)) + img = F.resize(img, new_size, self.interpolation) + pad_h = self.max_size - new_size[0] + pad_w = self.max_size - new_size[1] + img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill) + return img + + +def _convert_to_rgb(image): + return image.convert('RGB') + + +# class CatGen(nn.Module): +# def __init__(self, num=4): +# self.num = num +# def mixgen_batch(image, text): +# batch_size = image.shape[0] +# index = np.random.permutation(batch_size) + +# cat_images = [] +# for i in range(batch_size): +# # image mixup +# image[i,:] = lam * image[i,:] + (1 - lam) * image[index[i],:] +# # text concat +# text[i] = tokenizer((str(text[i]) + " " + str(text[index[i]])))[0] +# text = torch.stack(text) +# return image, text + + +def image_transform( + image_size: int, + is_train: bool, + mean: Optional[Tuple[float, ...]] = None, + std: Optional[Tuple[float, ...]] = None, + resize_longest_max: bool = False, + fill_color: int = 0, +): + mean = mean or OPENAI_DATASET_MEAN + if not isinstance(mean, (list, tuple)): + mean = (mean,) * 3 + + std = std or OPENAI_DATASET_STD + if not isinstance(std, (list, tuple)): + std = (std,) * 3 + + if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]: + # for square size, pass size as int so that Resize() uses aspect preserving shortest edge + image_size = image_size[0] + + normalize = Normalize(mean=mean, std=std) + if is_train: + return Compose([ + RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC), + _convert_to_rgb, + ToTensor(), + normalize, + ]) + else: + if resize_longest_max: + transforms = [ + ResizeMaxSize(image_size, fill=fill_color) + ] + else: + transforms = [ + Resize(image_size, interpolation=InterpolationMode.BICUBIC), + CenterCrop(image_size), + ] + transforms.extend([ + _convert_to_rgb, + ToTensor(), + normalize, + ]) + return Compose(transforms) diff --git a/eva_clip/transformer.py b/eva_clip/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..a68a81984909b769c67ed989c0cd9ebe118d02b2 --- /dev/null +++ b/eva_clip/transformer.py @@ -0,0 +1,792 @@ +import os +import logging +from collections import OrderedDict +import math +import warnings +from typing import Callable, Optional, Sequence +import numpy as np +import torch +from torch import nn +from torch.nn import functional as F + +from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast +from .utils import to_2tuple + +if os.getenv('ENV_TYPE') == 'deepspeed': + try: + import deepspeed + from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint + except: + print("Please 'pip install deepspeed'") + deepspeed = None + from torch.utils.checkpoint import checkpoint +else: + from torch.utils.checkpoint import checkpoint + +try: + import xformers.ops as xops +except ImportError: + xops = None + print("Please 'pip install xformers'") + + +def _no_grad_trunc_normal_(tensor, mean, std, a, b): + # Cut & paste from PyTorch official master until it's in a few official releases - RW + # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf + def norm_cdf(x): + # Computes standard normal cumulative distribution function + return (1. + math.erf(x / math.sqrt(2.))) / 2. + + if (mean < a - 2 * std) or (mean > b + 2 * std): + warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " + "The distribution of values may be incorrect.", + stacklevel=2) + + with torch.no_grad(): + # Values are generated by using a truncated uniform distribution and + # then using the inverse CDF for the normal distribution. + # Get upper and lower cdf values + l = norm_cdf((a - mean) / std) + u = norm_cdf((b - mean) / std) + + # Uniformly fill tensor with values from [l, u], then translate to + # [2l-1, 2u-1]. + tensor.uniform_(2 * l - 1, 2 * u - 1) + + # Use inverse cdf transform for normal distribution to get truncated + # standard normal + tensor.erfinv_() + + # Transform to proper mean, std + tensor.mul_(std * math.sqrt(2.)) + tensor.add_(mean) + + # Clamp to ensure it's in the proper range + tensor.clamp_(min=a, max=b) + return tensor + + +def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): + # type: (Tensor, float, float, float, float) -> Tensor + r"""Fills the input Tensor with values drawn from a truncated + normal distribution. The values are effectively drawn from the + normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` + with values outside :math:`[a, b]` redrawn until they are within + the bounds. The method used for generating the random values works + best when :math:`a \leq \text{mean} \leq b`. + Args: + tensor: an n-dimensional `torch.Tensor` + mean: the mean of the normal distribution + std: the standard deviation of the normal distribution + a: the minimum cutoff value + b: the maximum cutoff value + Examples: + >>> w = torch.empty(3, 5) + >>> nn.init.trunc_normal_(w) + """ + return _no_grad_trunc_normal_(tensor, mean, std, a, b) + + + +class LayerNormFp32(nn.LayerNorm): + """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).""" + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def forward(self, x: torch.Tensor): + output = F.layer_norm( + x.float(), + self.normalized_shape, + self.weight.float() if self.weight is not None else None, + self.bias.float() if self.bias is not None else None, + self.eps, + ) + return output.type_as(x) + + +class LayerNorm(nn.LayerNorm): + """Subclass torch's LayerNorm (with cast back to input dtype).""" + + def forward(self, x: torch.Tensor): + orig_type = x.dtype + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + return x.to(orig_type) + +class QuickGELU(nn.Module): + # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory + def forward(self, x: torch.Tensor): + return x * torch.sigmoid(1.702 * x) + + +class LayerScale(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + +class PatchDropout(nn.Module): + """ + https://arxiv.org/abs/2212.00794 + """ + + def __init__(self, prob, exclude_first_token=True): + super().__init__() + assert 0 <= prob < 1. + self.prob = prob + self.exclude_first_token = exclude_first_token # exclude CLS token + logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}") + + def forward(self, x): + if not self.training or self.prob == 0.: + return x + + if self.exclude_first_token: + cls_tokens, x = x[:, :1], x[:, 1:] + else: + cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) + + batch = x.size()[0] + num_tokens = x.size()[1] + + batch_indices = torch.arange(batch) + batch_indices = batch_indices[..., None] + + keep_prob = 1 - self.prob + num_patches_keep = max(1, int(num_tokens * keep_prob)) + + rand = torch.randn(batch, num_tokens) + patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices + + x = x[batch_indices, patch_indices_keep] + + if self.exclude_first_token: + x = torch.cat((cls_tokens, x), dim=1) + + if self.training and os.getenv('RoPE') == '1': + return x, patch_indices_keep + + return x + + +def _in_projection_packed( + q: torch.Tensor, + k: torch.Tensor, + v: torch.Tensor, + w: torch.Tensor, + b: Optional[torch.Tensor] = None, + ): + """ + https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726 + """ + E = q.size(-1) + if k is v: + if q is k: + # self-attention + return F.linear(q, w, b).chunk(3, dim=-1) + else: + # encoder-decoder attention + w_q, w_kv = w.split([E, E * 2]) + if b is None: + b_q = b_kv = None + else: + b_q, b_kv = b.split([E, E * 2]) + return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1) + else: + w_q, w_k, w_v = w.chunk(3) + if b is None: + b_q = b_k = b_v = None + else: + b_q, b_k, b_v = b.chunk(3) + return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v) + +class Attention(nn.Module): + def __init__( + self, + dim, + num_heads=8, + qkv_bias=True, + scaled_cosine=False, + scale_heads=False, + logit_scale_max=math.log(1. / 0.01), + attn_drop=0., + proj_drop=0., + xattn=False, + rope=False + ): + super().__init__() + self.scaled_cosine = scaled_cosine + self.scale_heads = scale_heads + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** -0.5 + self.logit_scale_max = logit_scale_max + + # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original + self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) + if qkv_bias: + self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) + else: + self.in_proj_bias = None + + if self.scaled_cosine: + self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) + else: + self.logit_scale = None + self.attn_drop = nn.Dropout(attn_drop) + if self.scale_heads: + self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) + else: + self.head_scale = None + self.out_proj = nn.Linear(dim, dim) + self.out_drop = nn.Dropout(proj_drop) + self.xattn = xattn + self.xattn_drop = attn_drop + self.rope = rope + + def forward(self, x, attn_mask: Optional[torch.Tensor] = None): + L, N, C = x.shape + q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1) + if self.xattn: + q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) + k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) + v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) + + x = xops.memory_efficient_attention( + q, k, v, + p=self.xattn_drop, + scale=self.scale if self.logit_scale is None else None, + attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None, + ) + else: + q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) + k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) + v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) + + if self.logit_scale is not None: + attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) + logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() + attn = attn.view(N, self.num_heads, L, L) * logit_scale + attn = attn.view(-1, L, L) + else: + q = q * self.scale + attn = torch.bmm(q, k.transpose(-1, -2)) + + if attn_mask is not None: + if attn_mask.dtype == torch.bool: + new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) + new_attn_mask.masked_fill_(attn_mask, float("-inf")) + attn_mask = new_attn_mask + attn += attn_mask + + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = torch.bmm(attn, v) + + if self.head_scale is not None: + x = x.view(N, self.num_heads, L, C) * self.head_scale + x = x.view(-1, L, C) + x = x.transpose(0, 1).reshape(L, N, C) + x = self.out_proj(x) + x = self.out_drop(x) + return x + +class CustomAttention(nn.Module): + def __init__( + self, + dim, + num_heads=8, + qkv_bias=True, + scaled_cosine=True, + scale_heads=False, + logit_scale_max=math.log(1. / 0.01), + attn_drop=0., + proj_drop=0., + xattn=False + ): + super().__init__() + self.scaled_cosine = scaled_cosine + self.scale_heads = scale_heads + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** -0.5 + self.logit_scale_max = logit_scale_max + + # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original + self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) + if qkv_bias: + self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) + else: + self.in_proj_bias = None + + if self.scaled_cosine: + self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) + else: + self.logit_scale = None + self.attn_drop = nn.Dropout(attn_drop) + if self.scale_heads: + self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) + else: + self.head_scale = None + self.out_proj = nn.Linear(dim, dim) + self.out_drop = nn.Dropout(proj_drop) + self.xattn = xattn + self.xattn_drop = attn_drop + + def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias) + N_q, B_q, C_q = q.shape + N_k, B_k, C_k = k.shape + N_v, B_v, C_v = v.shape + if self.xattn: + # B, N, C -> B, N, num_heads, C + q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1) + k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1) + v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1) + + x = xops.memory_efficient_attention( + q, k, v, + p=self.xattn_drop, + scale=self.scale if self.logit_scale is None else None, + attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None + ) + else: + # B*H, L, C + q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1) + k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1) + v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1) + + if self.logit_scale is not None: + # B*H, N_q, N_k + attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) + logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() + attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale + attn = attn.view(-1, N_q, N_k) + else: + q = q * self.scale + attn = torch.bmm(q, k.transpose(-1, -2)) + + if attn_mask is not None: + if attn_mask.dtype == torch.bool: + new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) + new_attn_mask.masked_fill_(attn_mask, float("-inf")) + attn_mask = new_attn_mask + attn += attn_mask + + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = torch.bmm(attn, v) + + if self.head_scale is not None: + x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale + x = x.view(-1, N_q, C_q) + x = x.transpose(0, 1).reshape(N_q, B_q, C_q) + x = self.out_proj(x) + x = self.out_drop(x) + return x + +class CustomResidualAttentionBlock(nn.Module): + def __init__( + self, + d_model: int, + n_head: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + scale_cosine_attn: bool = False, + scale_heads: bool = False, + scale_attn: bool = False, + scale_fc: bool = False, + cross_attn: bool = False, + xattn: bool = False, + ): + super().__init__() + + self.ln_1 = norm_layer(d_model) + self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1 + self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1 + self.attn = CustomAttention( + d_model, n_head, + qkv_bias=True, + attn_drop=0., + proj_drop=0., + scaled_cosine=scale_cosine_attn, + scale_heads=scale_heads, + xattn=xattn + ) + + self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity() + self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() + + self.ln_2 = norm_layer(d_model) + mlp_width = int(d_model * mlp_ratio) + self.mlp = nn.Sequential(OrderedDict([ + ("c_fc", nn.Linear(d_model, mlp_width)), + ('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()), + ("gelu", act_layer()), + ("c_proj", nn.Linear(mlp_width, d_model)) + ])) + + self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() + + def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask))) + q = q + self.ls_2(self.mlp(self.ln_2(q))) + return q + +class CustomTransformer(nn.Module): + def __init__( + self, + width: int, + layers: int, + heads: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + scale_cosine_attn: bool = True, + scale_heads: bool = False, + scale_attn: bool = False, + scale_fc: bool = False, + cross_attn: bool = False, + xattn: bool = False, + ): + super().__init__() + self.width = width + self.layers = layers + self.grad_checkpointing = False + self.xattn = xattn + + self.resblocks = nn.ModuleList([ + CustomResidualAttentionBlock( + width, + heads, + mlp_ratio, + ls_init_value=ls_init_value, + act_layer=act_layer, + norm_layer=norm_layer, + scale_cosine_attn=scale_cosine_attn, + scale_heads=scale_heads, + scale_attn=scale_attn, + scale_fc=scale_fc, + cross_attn=cross_attn, + xattn=xattn) + for _ in range(layers) + ]) + + def get_cast_dtype(self) -> torch.dtype: + return self.resblocks[0].mlp.c_fc.weight.dtype + + def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None): + if k is None and v is None: + k = v = q + for r in self.resblocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + q = checkpoint(r, q, k, v, attn_mask) + else: + q = r(q, k, v, attn_mask=attn_mask) + return q + + +class ResidualAttentionBlock(nn.Module): + def __init__( + self, + d_model: int, + n_head: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + xattn: bool = False, + ): + super().__init__() + + self.ln_1 = norm_layer(d_model) + if xattn: + self.attn = Attention(d_model, n_head, xattn=True) + else: + self.attn = nn.MultiheadAttention(d_model, n_head) + self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() + + self.ln_2 = norm_layer(d_model) + mlp_width = int(d_model * mlp_ratio) + self.mlp = nn.Sequential(OrderedDict([ + ("c_fc", nn.Linear(d_model, mlp_width)), + ("gelu", act_layer()), + ("c_proj", nn.Linear(mlp_width, d_model)) + ])) + + self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() + self.xattn = xattn + + def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None + if self.xattn: + return self.attn(x, attn_mask=attn_mask) + return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] + + def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask)) + x = x + self.ls_2(self.mlp(self.ln_2(x))) + return x + +class Transformer(nn.Module): + def __init__( + self, + width: int, + layers: int, + heads: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + xattn: bool = False, + ): + super().__init__() + self.width = width + self.layers = layers + self.grad_checkpointing = False + + self.resblocks = nn.ModuleList([ + ResidualAttentionBlock( + width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn) + for _ in range(layers) + ]) + + def get_cast_dtype(self) -> torch.dtype: + return self.resblocks[0].mlp.c_fc.weight.dtype + + def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + for r in self.resblocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(r, x, attn_mask) + else: + x = r(x, attn_mask=attn_mask) + return x + + +class VisionTransformer(nn.Module): + def __init__( + self, + image_size: int, + patch_size: int, + width: int, + layers: int, + heads: int, + mlp_ratio: float, + ls_init_value: float = None, + patch_dropout: float = 0., + global_average_pool: bool = False, + output_dim: int = 512, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + xattn: bool = False, + ): + super().__init__() + self.image_size = to_2tuple(image_size) + self.patch_size = to_2tuple(patch_size) + self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1]) + self.output_dim = output_dim + self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) + + scale = width ** -0.5 + self.class_embedding = nn.Parameter(scale * torch.randn(width)) + self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width)) + + # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn + self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() + self.ln_pre = norm_layer(width) + + self.transformer = Transformer( + width, + layers, + heads, + mlp_ratio, + ls_init_value=ls_init_value, + act_layer=act_layer, + norm_layer=norm_layer, + xattn=xattn + ) + + self.global_average_pool = global_average_pool + self.ln_post = norm_layer(width) + self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) + + def lock(self, unlocked_groups=0, freeze_bn_stats=False): + for param in self.parameters(): + param.requires_grad = False + + if unlocked_groups != 0: + groups = [ + [ + self.conv1, + self.class_embedding, + self.positional_embedding, + self.ln_pre, + ], + *self.transformer.resblocks[:-1], + [ + self.transformer.resblocks[-1], + self.ln_post, + ], + self.proj, + ] + + def _unlock(x): + if isinstance(x, Sequence): + for g in x: + _unlock(g) + else: + if isinstance(x, torch.nn.Parameter): + x.requires_grad = True + else: + for p in x.parameters(): + p.requires_grad = True + + _unlock(groups[-unlocked_groups:]) + + def get_num_layers(self): + return self.transformer.layers + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.transformer.grad_checkpointing = enable + + @torch.jit.ignore + def no_weight_decay(self): + return {'positional_embedding', 'class_embedding'} + + def forward(self, x: torch.Tensor, return_all_features: bool=False): + x = self.conv1(x) # shape = [*, width, grid, grid] + x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] + x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] + x = torch.cat( + [self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), + x], dim=1) # shape = [*, grid ** 2 + 1, width] + x = x + self.positional_embedding.to(x.dtype) + + # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in + x = self.patch_dropout(x) + x = self.ln_pre(x) + + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer(x) + x = x.permute(1, 0, 2) # LND -> NLD + + if not return_all_features: + if self.global_average_pool: + x = x.mean(dim=1) #x = x[:,1:,:].mean(dim=1) + else: + x = x[:, 0] + + x = self.ln_post(x) + + if self.proj is not None: + x = x @ self.proj + + return x + + +class TextTransformer(nn.Module): + def __init__( + self, + context_length: int = 77, + vocab_size: int = 49408, + width: int = 512, + heads: int = 8, + layers: int = 12, + ls_init_value: float = None, + output_dim: int = 512, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + xattn: bool= False, + attn_mask: bool = True + ): + super().__init__() + self.context_length = context_length + self.vocab_size = vocab_size + self.width = width + self.output_dim = output_dim + + self.token_embedding = nn.Embedding(vocab_size, width) + self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width)) + self.transformer = Transformer( + width=width, + layers=layers, + heads=heads, + ls_init_value=ls_init_value, + act_layer=act_layer, + norm_layer=norm_layer, + xattn=xattn + ) + + self.xattn = xattn + self.ln_final = norm_layer(width) + self.text_projection = nn.Parameter(torch.empty(width, output_dim)) + + if attn_mask: + self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False) + else: + self.attn_mask = None + + self.init_parameters() + + def init_parameters(self): + nn.init.normal_(self.token_embedding.weight, std=0.02) + nn.init.normal_(self.positional_embedding, std=0.01) + + proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) + attn_std = self.transformer.width ** -0.5 + fc_std = (2 * self.transformer.width) ** -0.5 + for block in self.transformer.resblocks: + nn.init.normal_(block.attn.in_proj_weight, std=attn_std) + nn.init.normal_(block.attn.out_proj.weight, std=proj_std) + nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) + nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) + + if self.text_projection is not None: + nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.transformer.grad_checkpointing = enable + + @torch.jit.ignore + def no_weight_decay(self): + # return {'positional_embedding', 'token_embedding'} + return {'positional_embedding'} + + def get_num_layers(self): + return self.transformer.layers + + def build_attention_mask(self): + # lazily create causal attention mask, with full attention between the vision tokens + # pytorch uses additive attention mask; fill with -inf + mask = torch.empty(self.context_length, self.context_length) + mask.fill_(float("-inf")) + mask.triu_(1) # zero out the lower diagonal + return mask + + def forward(self, text, return_all_features: bool=False): + cast_dtype = self.transformer.get_cast_dtype() + x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] + + x = x + self.positional_embedding.to(cast_dtype) + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer(x, attn_mask=self.attn_mask) + # x = self.transformer(x) # no attention mask is applied + x = x.permute(1, 0, 2) # LND -> NLD + x = self.ln_final(x) + + if not return_all_features: + # x.shape = [batch_size, n_ctx, transformer.width] + # take features from the eot embedding (eot_token is the highest number in each sequence) + x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection + return x diff --git a/eva_clip/utils.py b/eva_clip/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..bdc5a7a451fdf8911ebbc816afbd2664ff348836 --- /dev/null +++ b/eva_clip/utils.py @@ -0,0 +1,326 @@ +from itertools import repeat +import collections.abc +import logging +import math +import numpy as np + +import torch +from torch import nn as nn +from torchvision.ops.misc import FrozenBatchNorm2d +import torch.nn.functional as F + +# open CLIP +def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): + # Rescale the grid of position embeddings when loading from state_dict + old_pos_embed = state_dict.get('visual.positional_embedding', None) + if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): + return + grid_size = to_2tuple(model.visual.grid_size) + extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) + new_seq_len = grid_size[0] * grid_size[1] + extra_tokens + if new_seq_len == old_pos_embed.shape[0]: + return + + if extra_tokens: + pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] + else: + pos_emb_tok, pos_emb_img = None, old_pos_embed + old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) + + logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) + pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) + pos_emb_img = F.interpolate( + pos_emb_img, + size=grid_size, + mode=interpolation, + align_corners=True, + ) + pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] + if pos_emb_tok is not None: + new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) + else: + new_pos_embed = pos_emb_img + state_dict['visual.positional_embedding'] = new_pos_embed + + +def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): + # Rescale the grid of position embeddings when loading from state_dict + old_pos_embed = state_dict.get('positional_embedding', None) + if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): + return + grid_size = to_2tuple(model.visual.grid_size) + extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) + new_seq_len = grid_size[0] * grid_size[1] + extra_tokens + if new_seq_len == old_pos_embed.shape[0]: + return + + if extra_tokens: + pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] + else: + pos_emb_tok, pos_emb_img = None, old_pos_embed + old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) + + logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) + pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) + pos_emb_img = F.interpolate( + pos_emb_img, + size=grid_size, + mode=interpolation, + align_corners=True, + ) + pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] + if pos_emb_tok is not None: + new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) + else: + new_pos_embed = pos_emb_img + state_dict['positional_embedding'] = new_pos_embed + +def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): + all_keys = list(state_dict.keys()) + # interpolate position embedding + if 'visual.pos_embed' in state_dict: + pos_embed_checkpoint = state_dict['visual.pos_embed'] + embedding_size = pos_embed_checkpoint.shape[-1] + num_patches = model.visual.patch_embed.num_patches + num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches + # height (== width) for the checkpoint position embedding + orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) + # height (== width) for the new position embedding + new_size = int(num_patches ** 0.5) + # class_token and dist_token are kept unchanged + if orig_size != new_size: + print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) + extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] + # only the position tokens are interpolated + pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] + pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) + pos_tokens = torch.nn.functional.interpolate( + pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) + pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) + new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) + state_dict['visual.pos_embed'] = new_pos_embed + + patch_embed_proj = state_dict['visual.patch_embed.proj.weight'] + patch_size = model.visual.patch_embed.patch_size + state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate( + patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) + + +def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): + all_keys = list(state_dict.keys()) + # interpolate position embedding + if 'pos_embed' in state_dict: + pos_embed_checkpoint = state_dict['pos_embed'] + embedding_size = pos_embed_checkpoint.shape[-1] + num_patches = model.visual.patch_embed.num_patches + num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches + # height (== width) for the checkpoint position embedding + orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) + # height (== width) for the new position embedding + new_size = int(num_patches ** 0.5) + # class_token and dist_token are kept unchanged + if orig_size != new_size: + print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) + extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] + # only the position tokens are interpolated + pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] + pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) + pos_tokens = torch.nn.functional.interpolate( + pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) + pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) + new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) + state_dict['pos_embed'] = new_pos_embed + + patch_embed_proj = state_dict['patch_embed.proj.weight'] + patch_size = model.visual.patch_embed.patch_size + state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate( + patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) + + +def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): + all_keys = list(state_dict.keys()) + for key in all_keys: + if "relative_position_index" in key: + state_dict.pop(key) + + if "relative_position_bias_table" in key: + rel_pos_bias = state_dict[key] + src_num_pos, num_attn_heads = rel_pos_bias.size() + dst_num_pos, _ = model.visual.state_dict()[key].size() + dst_patch_shape = model.visual.patch_embed.patch_shape + if dst_patch_shape[0] != dst_patch_shape[1]: + raise NotImplementedError() + num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) + src_size = int((src_num_pos - num_extra_tokens) ** 0.5) + dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) + if src_size != dst_size: + print("Position interpolate for %s from %dx%d to %dx%d" % ( + key, src_size, src_size, dst_size, dst_size)) + extra_tokens = rel_pos_bias[-num_extra_tokens:, :] + rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] + + def geometric_progression(a, r, n): + return a * (1.0 - r ** n) / (1.0 - r) + + left, right = 1.01, 1.5 + while right - left > 1e-6: + q = (left + right) / 2.0 + gp = geometric_progression(1, q, src_size // 2) + if gp > dst_size // 2: + right = q + else: + left = q + + # if q > 1.090307: + # q = 1.090307 + + dis = [] + cur = 1 + for i in range(src_size // 2): + dis.append(cur) + cur += q ** (i + 1) + + r_ids = [-_ for _ in reversed(dis)] + + x = r_ids + [0] + dis + y = r_ids + [0] + dis + + t = dst_size // 2.0 + dx = np.arange(-t, t + 0.1, 1.0) + dy = np.arange(-t, t + 0.1, 1.0) + + print("Original positions = %s" % str(x)) + print("Target positions = %s" % str(dx)) + + all_rel_pos_bias = [] + + for i in range(num_attn_heads): + z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() + f = F.interpolate.interp2d(x, y, z, kind='cubic') + all_rel_pos_bias.append( + torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) + + rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) + + new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) + state_dict[key] = new_rel_pos_bias + + # interpolate position embedding + if 'pos_embed' in state_dict: + pos_embed_checkpoint = state_dict['pos_embed'] + embedding_size = pos_embed_checkpoint.shape[-1] + num_patches = model.visual.patch_embed.num_patches + num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches + # height (== width) for the checkpoint position embedding + orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) + # height (== width) for the new position embedding + new_size = int(num_patches ** 0.5) + # class_token and dist_token are kept unchanged + if orig_size != new_size: + print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) + extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] + # only the position tokens are interpolated + pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] + pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) + pos_tokens = torch.nn.functional.interpolate( + pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) + pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) + new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) + state_dict['pos_embed'] = new_pos_embed + + patch_embed_proj = state_dict['patch_embed.proj.weight'] + patch_size = model.visual.patch_embed.patch_size + state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate( + patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) + + +def freeze_batch_norm_2d(module, module_match={}, name=''): + """ + Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is + itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and + returned. Otherwise, the module is walked recursively and submodules are converted in place. + + Args: + module (torch.nn.Module): Any PyTorch module. + module_match (dict): Dictionary of full module names to freeze (all if empty) + name (str): Full module name (prefix) + + Returns: + torch.nn.Module: Resulting module + + Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 + """ + res = module + is_match = True + if module_match: + is_match = name in module_match + if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)): + res = FrozenBatchNorm2d(module.num_features) + res.num_features = module.num_features + res.affine = module.affine + if module.affine: + res.weight.data = module.weight.data.clone().detach() + res.bias.data = module.bias.data.clone().detach() + res.running_mean.data = module.running_mean.data + res.running_var.data = module.running_var.data + res.eps = module.eps + else: + for child_name, child in module.named_children(): + full_child_name = '.'.join([name, child_name]) if name else child_name + new_child = freeze_batch_norm_2d(child, module_match, full_child_name) + if new_child is not child: + res.add_module(child_name, new_child) + return res + + +# From PyTorch internals +def _ntuple(n): + def parse(x): + if isinstance(x, collections.abc.Iterable): + return x + return tuple(repeat(x, n)) + return parse + + +to_1tuple = _ntuple(1) +to_2tuple = _ntuple(2) +to_3tuple = _ntuple(3) +to_4tuple = _ntuple(4) +to_ntuple = lambda n, x: _ntuple(n)(x) + + +def is_logging(args): + def is_global_master(args): + return args.rank == 0 + + def is_local_master(args): + return args.local_rank == 0 + + def is_master(args, local=False): + return is_local_master(args) if local else is_global_master(args) + return is_master + + +class AllGather(torch.autograd.Function): + """An autograd function that performs allgather on a tensor. + Performs all_gather operation on the provided tensors. + *** Warning ***: torch.distributed.all_gather has no gradient. + """ + + @staticmethod + def forward(ctx, tensor, rank, world_size): + tensors_gather = [torch.empty_like(tensor) for _ in range(world_size)] + torch.distributed.all_gather(tensors_gather, tensor) + ctx.rank = rank + ctx.batch_size = tensor.shape[0] + return torch.cat(tensors_gather, 0) + + @staticmethod + def backward(ctx, grad_output): + return ( + grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)], + None, + None + ) + +allgather = AllGather.apply \ No newline at end of file diff --git a/example_inputs/hinton.jpeg b/example_inputs/hinton.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..0b3d27aedac18b2bb57af1c6e273f88d18c62985 Binary files /dev/null and b/example_inputs/hinton.jpeg differ diff --git a/example_inputs/lecun.jpg b/example_inputs/lecun.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4a15ae380e5e9224637c70f79cb72f37a91166b6 Binary files /dev/null and b/example_inputs/lecun.jpg differ diff --git a/example_inputs/lifeifei.jpg b/example_inputs/lifeifei.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e068a210b7cd68459182d320980b3c0c91a82195 Binary files /dev/null and b/example_inputs/lifeifei.jpg differ diff --git a/example_inputs/liuyifei.png b/example_inputs/liuyifei.png new file mode 100644 index 0000000000000000000000000000000000000000..b282a89c5cfbc76c4f1bc6b53026c0ede132d598 Binary files /dev/null and b/example_inputs/liuyifei.png differ diff --git a/example_inputs/pengwei.jpg b/example_inputs/pengwei.jpg new file mode 100644 index 0000000000000000000000000000000000000000..18450da36de4fb7fd790b4b202cbbf2d68b77610 --- /dev/null +++ b/example_inputs/pengwei.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1d163eb4cc3244e063895263490ee5abc199fe915e6dae9aadbdfb435523644c +size 1244849 diff --git a/example_inputs/rihanna.webp b/example_inputs/rihanna.webp new file mode 100644 index 0000000000000000000000000000000000000000..51e822186c5eff1ebe65b698aabc41d0845a4361 Binary files /dev/null and b/example_inputs/rihanna.webp differ diff --git a/example_inputs/zcy.webp b/example_inputs/zcy.webp new file mode 100644 index 0000000000000000000000000000000000000000..7f229804f1762ce691196470fc9d95477046a36c Binary files /dev/null and b/example_inputs/zcy.webp differ diff --git a/flux/.DS_Store b/flux/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..5f18198e163e57fa4cdd0c4a21c8a5ccf6115b3f Binary files /dev/null and b/flux/.DS_Store differ diff --git a/flux/__init__.py b/flux/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..43c365a49d6980e88acba10ef3069f110a59644a --- /dev/null +++ b/flux/__init__.py @@ -0,0 +1,11 @@ +try: + from ._version import version as __version__ # type: ignore + from ._version import version_tuple +except ImportError: + __version__ = "unknown (no version information available)" + version_tuple = (0, 0, "unknown", "noinfo") + +from pathlib import Path + +PACKAGE = __package__.replace("_", "-") +PACKAGE_ROOT = Path(__file__).parent diff --git a/flux/__main__.py b/flux/__main__.py new file mode 100644 index 0000000000000000000000000000000000000000..d5cf0fd2444d4cda4053fa74dad3371556b886e5 --- /dev/null +++ b/flux/__main__.py @@ -0,0 +1,4 @@ +from .cli import app + +if __name__ == "__main__": + app() diff --git a/flux/api.py b/flux/api.py new file mode 100644 index 0000000000000000000000000000000000000000..20de88ed894a1abee113bb4e559ea019064ed95f --- /dev/null +++ b/flux/api.py @@ -0,0 +1,194 @@ +import io +import os +import time +from pathlib import Path + +import requests +from PIL import Image + +API_ENDPOINT = "https://api.bfl.ml" + + +class ApiException(Exception): + def __init__(self, status_code: int, detail: str = None): + super().__init__() + self.detail = detail + self.status_code = status_code + + def __str__(self) -> str: + return self.__repr__() + + def __repr__(self) -> str: + if self.detail is None: + message = None + elif isinstance(self.detail, str): + message = self.detail + else: + message = "[" + ",".join(d["msg"] for d in self.detail) + "]" + return f"ApiException({self.status_code=}, {message=}, detail={self.detail})" + + +class ImageRequest: + def __init__( + self, + prompt: str, + width: int = 1024, + height: int = 1024, + name: str = "flux.1-pro", + num_steps: int = 50, + prompt_upsampling: bool = False, + seed: int = None, + validate: bool = True, + launch: bool = True, + api_key: str = None, + ): + """ + Manages an image generation request to the API. + + Args: + prompt: Prompt to sample + width: Width of the image in pixel + height: Height of the image in pixel + name: Name of the model + num_steps: Number of network evaluations + prompt_upsampling: Use prompt upsampling + seed: Fix the generation seed + validate: Run input validation + launch: Directly launches request + api_key: Your API key if not provided by the environment + + Raises: + ValueError: For invalid input + ApiException: For errors raised from the API + """ + if validate: + if name not in ["flux.1-pro"]: + raise ValueError(f"Invalid model {name}") + elif width % 32 != 0: + raise ValueError(f"width must be divisible by 32, got {width}") + elif not (256 <= width <= 1440): + raise ValueError(f"width must be between 256 and 1440, got {width}") + elif height % 32 != 0: + raise ValueError(f"height must be divisible by 32, got {height}") + elif not (256 <= height <= 1440): + raise ValueError(f"height must be between 256 and 1440, got {height}") + elif not (1 <= num_steps <= 50): + raise ValueError(f"steps must be between 1 and 50, got {num_steps}") + + self.request_json = { + "prompt": prompt, + "width": width, + "height": height, + "variant": name, + "steps": num_steps, + "prompt_upsampling": prompt_upsampling, + } + if seed is not None: + self.request_json["seed"] = seed + + self.request_id: str = None + self.result: dict = None + self._image_bytes: bytes = None + self._url: str = None + if api_key is None: + self.api_key = os.environ.get("BFL_API_KEY") + else: + self.api_key = api_key + + if launch: + self.request() + + def request(self): + """ + Request to generate the image. + """ + if self.request_id is not None: + return + response = requests.post( + f"{API_ENDPOINT}/v1/image", + headers={ + "accept": "application/json", + "x-key": self.api_key, + "Content-Type": "application/json", + }, + json=self.request_json, + ) + result = response.json() + if response.status_code != 200: + raise ApiException(status_code=response.status_code, detail=result.get("detail")) + self.request_id = response.json()["id"] + + def retrieve(self) -> dict: + """ + Wait for the generation to finish and retrieve response. + """ + if self.request_id is None: + self.request() + while self.result is None: + response = requests.get( + f"{API_ENDPOINT}/v1/get_result", + headers={ + "accept": "application/json", + "x-key": self.api_key, + }, + params={ + "id": self.request_id, + }, + ) + result = response.json() + if "status" not in result: + raise ApiException(status_code=response.status_code, detail=result.get("detail")) + elif result["status"] == "Ready": + self.result = result["result"] + elif result["status"] == "Pending": + time.sleep(0.5) + else: + raise ApiException(status_code=200, detail=f"API returned status '{result['status']}'") + return self.result + + @property + def bytes(self) -> bytes: + """ + Generated image as bytes. + """ + if self._image_bytes is None: + response = requests.get(self.url) + if response.status_code == 200: + self._image_bytes = response.content + else: + raise ApiException(status_code=response.status_code) + return self._image_bytes + + @property + def url(self) -> str: + """ + Public url to retrieve the image from + """ + if self._url is None: + result = self.retrieve() + self._url = result["sample"] + return self._url + + @property + def image(self) -> Image.Image: + """ + Load the image as a PIL Image + """ + return Image.open(io.BytesIO(self.bytes)) + + def save(self, path: str): + """ + Save the generated image to a local path + """ + suffix = Path(self.url).suffix + if not path.endswith(suffix): + path = path + suffix + Path(path).resolve().parent.mkdir(parents=True, exist_ok=True) + with open(path, "wb") as file: + file.write(self.bytes) + + +if __name__ == "__main__": + from fire import Fire + + Fire(ImageRequest) diff --git a/flux/cli.py b/flux/cli.py new file mode 100644 index 0000000000000000000000000000000000000000..0ccae746651c81714b622207655ff81966fade56 --- /dev/null +++ b/flux/cli.py @@ -0,0 +1,260 @@ +import os +import re +import time +from dataclasses import dataclass +from glob import iglob + +import torch +from einops import rearrange +from fire import Fire +from PIL import ExifTags, Image +from transformers import pipeline + +from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack +from flux.util import ( + configs, + load_ae, + load_clip, + load_flow_model, + load_t5, +) + +NSFW_THRESHOLD = 0.85 + + +@dataclass +class SamplingOptions: + prompt: str + width: int + height: int + num_steps: int + guidance: float + seed: int + + +def parse_prompt(options: SamplingOptions) -> SamplingOptions: + user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n" + usage = ( + "Usage: Either write your prompt directly, leave this field empty " + "to repeat the prompt or write a command starting with a slash:\n" + "- '/w ' will set the width of the generated image\n" + "- '/h ' will set the height of the generated image\n" + "- '/s ' sets the next seed\n" + "- '/g ' sets the guidance (flux-dev only)\n" + "- '/n ' sets the number of steps\n" + "- '/q' to quit" + ) + + while (prompt := input(user_question)).startswith("/"): + if prompt.startswith("/w"): + if prompt.count(" ") != 1: + print(f"Got invalid command '{prompt}'\n{usage}") + continue + _, width = prompt.split() + options.width = 16 * (int(width) // 16) + print( + f"Setting resolution to {options.width} x {options.height} " + f"({options.height * options.width / 1e6:.2f}MP)" + ) + elif prompt.startswith("/h"): + if prompt.count(" ") != 1: + print(f"Got invalid command '{prompt}'\n{usage}") + continue + _, height = prompt.split() + options.height = 16 * (int(height) // 16) + print( + f"Setting resolution to {options.width} x {options.height} " + f"({options.height * options.width / 1e6:.2f}MP)" + ) + elif prompt.startswith("/g"): + if prompt.count(" ") != 1: + print(f"Got invalid command '{prompt}'\n{usage}") + continue + _, guidance = prompt.split() + options.guidance = float(guidance) + print(f"Setting guidance to {options.guidance}") + elif prompt.startswith("/s"): + if prompt.count(" ") != 1: + print(f"Got invalid command '{prompt}'\n{usage}") + continue + _, seed = prompt.split() + options.seed = int(seed) + print(f"Setting seed to {options.seed}") + elif prompt.startswith("/n"): + if prompt.count(" ") != 1: + print(f"Got invalid command '{prompt}'\n{usage}") + continue + _, steps = prompt.split() + options.num_steps = int(steps) + print(f"Setting seed to {options.num_steps}") + elif prompt.startswith("/q"): + print("Quitting") + return None + else: + if not prompt.startswith("/h"): + print(f"Got invalid command '{prompt}'\n{usage}") + print(usage) + if prompt != "": + options.prompt = prompt + return options + + +@torch.inference_mode() +def main( + name: str = "flux-schnell", + width: int = 1360, + height: int = 768, + seed: int = None, + prompt: str = ( + "a photo of a forest with mist swirling around the tree trunks. The word " + '"FLUX" is painted over it in big, red brush strokes with visible texture' + ), + device: str = "cuda" if torch.cuda.is_available() else "cpu", + num_steps: int = None, + loop: bool = False, + guidance: float = 3.5, + offload: bool = False, + output_dir: str = "output", + add_sampling_metadata: bool = True, +): + """ + Sample the flux model. Either interactively (set `--loop`) or run for a + single image. + + Args: + name: Name of the model to load + height: height of the sample in pixels (should be a multiple of 16) + width: width of the sample in pixels (should be a multiple of 16) + seed: Set a seed for sampling + output_name: where to save the output image, `{idx}` will be replaced + by the index of the sample + prompt: Prompt used for sampling + device: Pytorch device + num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled) + loop: start an interactive session and sample multiple times + guidance: guidance value used for guidance distillation + add_sampling_metadata: Add the prompt to the image Exif metadata + """ + nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection") + + if name not in configs: + available = ", ".join(configs.keys()) + raise ValueError(f"Got unknown model name: {name}, chose from {available}") + + torch_device = torch.device(device) + if num_steps is None: + num_steps = 4 if name == "flux-schnell" else 50 + + # allow for packing and conversion to latent space + height = 16 * (height // 16) + width = 16 * (width // 16) + + output_name = os.path.join(output_dir, "img_{idx}.jpg") + if not os.path.exists(output_dir): + os.makedirs(output_dir) + idx = 0 + else: + fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]\.jpg$", fn)] + if len(fns) > 0: + idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1 + else: + idx = 0 + + # init all components + t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512) + clip = load_clip(torch_device) + model = load_flow_model(name, device="cpu" if offload else torch_device) + ae = load_ae(name, device="cpu" if offload else torch_device) + + rng = torch.Generator(device="cpu") + opts = SamplingOptions( + prompt=prompt, + width=width, + height=height, + num_steps=num_steps, + guidance=guidance, + seed=seed, + ) + + if loop: + opts = parse_prompt(opts) + + while opts is not None: + if opts.seed is None: + opts.seed = rng.seed() + print(f"Generating with seed {opts.seed}:\n{opts.prompt}") + t0 = time.perf_counter() + + # prepare input + x = get_noise( + 1, + opts.height, + opts.width, + device=torch_device, + dtype=torch.bfloat16, + seed=opts.seed, + ) + opts.seed = None + if offload: + ae = ae.cpu() + torch.cuda.empty_cache() + t5, clip = t5.to(torch_device), clip.to(torch_device) + inp = prepare(t5, clip, x, prompt=opts.prompt) + timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell")) + + # offload TEs to CPU, load model to gpu + if offload: + t5, clip = t5.cpu(), clip.cpu() + torch.cuda.empty_cache() + model = model.to(torch_device) + + # denoise initial noise + x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance) + + # offload model, load autoencoder to gpu + if offload: + model.cpu() + torch.cuda.empty_cache() + ae.decoder.to(x.device) + + # decode latents to pixel space + x = unpack(x.float(), opts.height, opts.width) + with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16): + x = ae.decode(x) + t1 = time.perf_counter() + + fn = output_name.format(idx=idx) + print(f"Done in {t1 - t0:.1f}s. Saving {fn}") + # bring into PIL format and save + x = x.clamp(-1, 1) + # x = embed_watermark(x.float()) + x = rearrange(x[0], "c h w -> h w c") + + img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) + nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0] + + if nsfw_score < NSFW_THRESHOLD: + exif_data = Image.Exif() + exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux" + exif_data[ExifTags.Base.Make] = "Black Forest Labs" + exif_data[ExifTags.Base.Model] = name + if add_sampling_metadata: + exif_data[ExifTags.Base.ImageDescription] = prompt + img.save(fn, exif=exif_data, quality=95, subsampling=0) + idx += 1 + else: + print("Your generated image may contain NSFW content.") + + if loop: + print("-" * 80) + opts = parse_prompt(opts) + else: + opts = None + + +def app(): + Fire(main) + + +if __name__ == "__main__": + app() diff --git a/flux/math.py b/flux/math.py new file mode 100644 index 0000000000000000000000000000000000000000..6c76bdc7f20b694a559f74a617adb14c19fbb3d0 --- /dev/null +++ b/flux/math.py @@ -0,0 +1,31 @@ +import torch +from einops import rearrange +from torch import Tensor + + +def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: + if pe is not None: + q, k = apply_rope(q, k, pe) + + x = torch.nn.functional.scaled_dot_product_attention(q, k, v) + x = rearrange(x, "B H L D -> B L (H D)") + + return x + + +def rope(pos: Tensor, dim: int, theta: int) -> Tensor: + assert dim % 2 == 0 + scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim + omega = 1.0 / (theta**scale) + out = torch.einsum("...n,d->...nd", pos, omega) + out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) + out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) + return out.float() + + +def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: + xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) + xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) + xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] + xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] + return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) diff --git a/flux/model.py b/flux/model.py new file mode 100644 index 0000000000000000000000000000000000000000..619a46697fe75794dba8ab25167ff7436536a77c --- /dev/null +++ b/flux/model.py @@ -0,0 +1,135 @@ +from dataclasses import dataclass + +import torch +from torch import Tensor, nn + +from flux.modules.layers import ( + DoubleStreamBlock, + EmbedND, + LastLayer, + MLPEmbedder, + SingleStreamBlock, + timestep_embedding, +) + + +@dataclass +class FluxParams: + in_channels: int + vec_in_dim: int + context_in_dim: int + hidden_size: int + mlp_ratio: float + num_heads: int + depth: int + depth_single_blocks: int + axes_dim: list[int] + theta: int + qkv_bias: bool + guidance_embed: bool + + +class Flux(nn.Module): + """ + Transformer model for flow matching on sequences. + """ + + def __init__(self, params: FluxParams): + super().__init__() + + self.params = params + self.in_channels = params.in_channels + self.out_channels = self.in_channels + if params.hidden_size % params.num_heads != 0: + raise ValueError( + f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" + ) + pe_dim = params.hidden_size // params.num_heads + if sum(params.axes_dim) != pe_dim: + raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") + self.hidden_size = params.hidden_size + self.num_heads = params.num_heads + self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) + self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) + self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) + self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) + self.guidance_in = ( + MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() + ) + self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) + + self.double_blocks = nn.ModuleList( + [ + DoubleStreamBlock( + self.hidden_size, + self.num_heads, + mlp_ratio=params.mlp_ratio, + qkv_bias=params.qkv_bias, + ) + for _ in range(params.depth) + ] + ) + + self.single_blocks = nn.ModuleList( + [ + SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio) + for _ in range(params.depth_single_blocks) + ] + ) + + self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) + + self.pulid_ca = None + self.pulid_double_interval = 2 + self.pulid_single_interval = 4 + + def forward( + self, + img: Tensor, + img_ids: Tensor, + txt: Tensor, + txt_ids: Tensor, + timesteps: Tensor, + y: Tensor, + guidance: Tensor = None, + id: Tensor = None, + id_weight: float = 1.0, + ) -> Tensor: + if img.ndim != 3 or txt.ndim != 3: + raise ValueError("Input img and txt tensors must have 3 dimensions.") + + # running on sequences img + img = self.img_in(img) + vec = self.time_in(timestep_embedding(timesteps, 256)) + if self.params.guidance_embed: + if guidance is None: + raise ValueError("Didn't get guidance strength for guidance distilled model.") + vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) + vec = vec + self.vector_in(y) + txt = self.txt_in(txt) + + ids = torch.cat((txt_ids, img_ids), dim=1) + pe = self.pe_embedder(ids) + + ca_idx = 0 + for i, block in enumerate(self.double_blocks): + img, txt = block(img=img, txt=txt, vec=vec, pe=pe) + + if i % self.pulid_double_interval == 0 and id is not None: + img = img + id_weight * self.pulid_ca[ca_idx](id, img) + ca_idx += 1 + + img = torch.cat((txt, img), 1) + for i, block in enumerate(self.single_blocks): + x = block(img, vec=vec, pe=pe) + real_img, txt = x[:, txt.shape[1]:, ...], x[:, :txt.shape[1], ...] + + if i % self.pulid_single_interval == 0 and id is not None: + real_img = real_img + id_weight * self.pulid_ca[ca_idx](id, real_img) + ca_idx += 1 + + img = torch.cat((txt, real_img), 1) + img = img[:, txt.shape[1] :, ...] + + img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) + return img diff --git a/flux/modules/__init__.py b/flux/modules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/flux/modules/autoencoder.py b/flux/modules/autoencoder.py new file mode 100644 index 0000000000000000000000000000000000000000..75159f711f65f064107a1a1b9be6f09fc9872028 --- /dev/null +++ b/flux/modules/autoencoder.py @@ -0,0 +1,312 @@ +from dataclasses import dataclass + +import torch +from einops import rearrange +from torch import Tensor, nn + + +@dataclass +class AutoEncoderParams: + resolution: int + in_channels: int + ch: int + out_ch: int + ch_mult: list[int] + num_res_blocks: int + z_channels: int + scale_factor: float + shift_factor: float + + +def swish(x: Tensor) -> Tensor: + return x * torch.sigmoid(x) + + +class AttnBlock(nn.Module): + def __init__(self, in_channels: int): + super().__init__() + self.in_channels = in_channels + + self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) + + self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1) + self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1) + self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1) + self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1) + + def attention(self, h_: Tensor) -> Tensor: + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + b, c, h, w = q.shape + q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous() + k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous() + v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous() + h_ = nn.functional.scaled_dot_product_attention(q, k, v) + + return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b) + + def forward(self, x: Tensor) -> Tensor: + return x + self.proj_out(self.attention(x)) + + +class ResnetBlock(nn.Module): + def __init__(self, in_channels: int, out_channels: int): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + + self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) + self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True) + self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + if self.in_channels != self.out_channels: + self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, x): + h = x + h = self.norm1(h) + h = swish(h) + h = self.conv1(h) + + h = self.norm2(h) + h = swish(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + x = self.nin_shortcut(x) + + return x + h + + +class Downsample(nn.Module): + def __init__(self, in_channels: int): + super().__init__() + # no asymmetric padding in torch conv, must do it ourselves + self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) + + def forward(self, x: Tensor): + pad = (0, 1, 0, 1) + x = nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + return x + + +class Upsample(nn.Module): + def __init__(self, in_channels: int): + super().__init__() + self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) + + def forward(self, x: Tensor): + x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") + x = self.conv(x) + return x + + +class Encoder(nn.Module): + def __init__( + self, + resolution: int, + in_channels: int, + ch: int, + ch_mult: list[int], + num_res_blocks: int, + z_channels: int, + ): + super().__init__() + self.ch = ch + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + # downsampling + self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) + + curr_res = resolution + in_ch_mult = (1,) + tuple(ch_mult) + self.in_ch_mult = in_ch_mult + self.down = nn.ModuleList() + block_in = self.ch + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch * in_ch_mult[i_level] + block_out = ch * ch_mult[i_level] + for _ in range(self.num_res_blocks): + block.append(ResnetBlock(in_channels=block_in, out_channels=block_out)) + block_in = block_out + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions - 1: + down.downsample = Downsample(block_in) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in) + self.mid.attn_1 = AttnBlock(block_in) + self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in) + + # end + self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) + self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1) + + def forward(self, x: Tensor) -> Tensor: + # downsampling + hs = [self.conv_in(x)] + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1]) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions - 1: + hs.append(self.down[i_level].downsample(hs[-1])) + + # middle + h = hs[-1] + h = self.mid.block_1(h) + h = self.mid.attn_1(h) + h = self.mid.block_2(h) + # end + h = self.norm_out(h) + h = swish(h) + h = self.conv_out(h) + return h + + +class Decoder(nn.Module): + def __init__( + self, + ch: int, + out_ch: int, + ch_mult: list[int], + num_res_blocks: int, + in_channels: int, + resolution: int, + z_channels: int, + ): + super().__init__() + self.ch = ch + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.ffactor = 2 ** (self.num_resolutions - 1) + + # compute in_ch_mult, block_in and curr_res at lowest res + block_in = ch * ch_mult[self.num_resolutions - 1] + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.z_shape = (1, z_channels, curr_res, curr_res) + + # z to block_in + self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in) + self.mid.attn_1 = AttnBlock(block_in) + self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + for _ in range(self.num_res_blocks + 1): + block.append(ResnetBlock(in_channels=block_in, out_channels=block_out)) + block_in = block_out + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) + self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) + + def forward(self, z: Tensor) -> Tensor: + # z to block_in + h = self.conv_in(z) + + # middle + h = self.mid.block_1(h) + h = self.mid.attn_1(h) + h = self.mid.block_2(h) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.up[i_level].block[i_block](h) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + h = self.norm_out(h) + h = swish(h) + h = self.conv_out(h) + return h + + +class DiagonalGaussian(nn.Module): + def __init__(self, sample: bool = True, chunk_dim: int = 1): + super().__init__() + self.sample = sample + self.chunk_dim = chunk_dim + + def forward(self, z: Tensor) -> Tensor: + mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim) + if self.sample: + std = torch.exp(0.5 * logvar) + return mean + std * torch.randn_like(mean) + else: + return mean + + +class AutoEncoder(nn.Module): + def __init__(self, params: AutoEncoderParams): + super().__init__() + self.encoder = Encoder( + resolution=params.resolution, + in_channels=params.in_channels, + ch=params.ch, + ch_mult=params.ch_mult, + num_res_blocks=params.num_res_blocks, + z_channels=params.z_channels, + ) + self.decoder = Decoder( + resolution=params.resolution, + in_channels=params.in_channels, + ch=params.ch, + out_ch=params.out_ch, + ch_mult=params.ch_mult, + num_res_blocks=params.num_res_blocks, + z_channels=params.z_channels, + ) + self.reg = DiagonalGaussian() + + self.scale_factor = params.scale_factor + self.shift_factor = params.shift_factor + + def encode(self, x: Tensor) -> Tensor: + z = self.reg(self.encoder(x)) + z = self.scale_factor * (z - self.shift_factor) + return z + + def decode(self, z: Tensor) -> Tensor: + z = z / self.scale_factor + self.shift_factor + return self.decoder(z) + + def forward(self, x: Tensor) -> Tensor: + return self.decode(self.encode(x)) diff --git a/flux/modules/conditioner.py b/flux/modules/conditioner.py new file mode 100644 index 0000000000000000000000000000000000000000..e60297e45813862ffdf03b79fd8fbe5b4a17029d --- /dev/null +++ b/flux/modules/conditioner.py @@ -0,0 +1,37 @@ +from torch import Tensor, nn +from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer + + +class HFEmbedder(nn.Module): + def __init__(self, version: str, max_length: int, **hf_kwargs): + super().__init__() + self.is_clip = version.startswith("openai") + self.max_length = max_length + self.output_key = "pooler_output" if self.is_clip else "last_hidden_state" + + if self.is_clip: + self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length) + self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs) + else: + self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length) + self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs) + + self.hf_module = self.hf_module.eval().requires_grad_(False) + + def forward(self, text: list[str]) -> Tensor: + batch_encoding = self.tokenizer( + text, + truncation=True, + max_length=self.max_length, + return_length=False, + return_overflowing_tokens=False, + padding="max_length", + return_tensors="pt", + ) + + outputs = self.hf_module( + input_ids=batch_encoding["input_ids"].to(self.hf_module.device), + attention_mask=None, + output_hidden_states=False, + ) + return outputs[self.output_key] diff --git a/flux/modules/layers.py b/flux/modules/layers.py new file mode 100644 index 0000000000000000000000000000000000000000..fc36b059dd82101ab1a8ba8f42b2ca9d9df2836a --- /dev/null +++ b/flux/modules/layers.py @@ -0,0 +1,253 @@ +import math +from dataclasses import dataclass + +import torch +from einops import rearrange +from torch import Tensor, nn + +from flux.math import attention, rope + + +class EmbedND(nn.Module): + def __init__(self, dim: int, theta: int, axes_dim: list[int]): + super().__init__() + self.dim = dim + self.theta = theta + self.axes_dim = axes_dim + + def forward(self, ids: Tensor) -> Tensor: + n_axes = ids.shape[-1] + emb = torch.cat( + [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], + dim=-3, + ) + + return emb.unsqueeze(1) + + +def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): + """ + Create sinusoidal timestep embeddings. + :param t: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an (N, D) Tensor of positional embeddings. + """ + t = time_factor * t + half = dim // 2 + freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( + t.device + ) + + args = t[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) + if torch.is_floating_point(t): + embedding = embedding.to(t) + return embedding + + +class MLPEmbedder(nn.Module): + def __init__(self, in_dim: int, hidden_dim: int): + super().__init__() + self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) + self.silu = nn.SiLU() + self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) + + def forward(self, x: Tensor) -> Tensor: + return self.out_layer(self.silu(self.in_layer(x))) + + +class RMSNorm(torch.nn.Module): + def __init__(self, dim: int): + super().__init__() + self.scale = nn.Parameter(torch.ones(dim)) + + def forward(self, x: Tensor): + x_dtype = x.dtype + x = x.float() + rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) + return (x * rrms).to(dtype=x_dtype) * self.scale + + +class QKNorm(torch.nn.Module): + def __init__(self, dim: int): + super().__init__() + self.query_norm = RMSNorm(dim) + self.key_norm = RMSNorm(dim) + + def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: + q = self.query_norm(q) + k = self.key_norm(k) + return q.to(v), k.to(v) + + +class SelfAttention(nn.Module): + def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.norm = QKNorm(head_dim) + self.proj = nn.Linear(dim, dim) + + def forward(self, x: Tensor, pe: Tensor) -> Tensor: + qkv = self.qkv(x) + q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + q, k = self.norm(q, k, v) + x = attention(q, k, v, pe=pe) + x = self.proj(x) + return x + + +@dataclass +class ModulationOut: + shift: Tensor + scale: Tensor + gate: Tensor + + +class Modulation(nn.Module): + def __init__(self, dim: int, double: bool): + super().__init__() + self.is_double = double + self.multiplier = 6 if double else 3 + self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) + + def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut]: + out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) + + return ( + ModulationOut(*out[:3]), + ModulationOut(*out[3:]) if self.is_double else None, + ) + + +class DoubleStreamBlock(nn.Module): + def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False): + super().__init__() + + mlp_hidden_dim = int(hidden_size * mlp_ratio) + self.num_heads = num_heads + self.hidden_size = hidden_size + self.img_mod = Modulation(hidden_size, double=True) + self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) + self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) + + self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) + self.img_mlp = nn.Sequential( + nn.Linear(hidden_size, mlp_hidden_dim, bias=True), + nn.GELU(approximate="tanh"), + nn.Linear(mlp_hidden_dim, hidden_size, bias=True), + ) + + self.txt_mod = Modulation(hidden_size, double=True) + self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) + self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) + + self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) + self.txt_mlp = nn.Sequential( + nn.Linear(hidden_size, mlp_hidden_dim, bias=True), + nn.GELU(approximate="tanh"), + nn.Linear(mlp_hidden_dim, hidden_size, bias=True), + ) + + def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]: + img_mod1, img_mod2 = self.img_mod(vec) + txt_mod1, txt_mod2 = self.txt_mod(vec) + + # prepare image for attention + img_modulated = self.img_norm1(img) + img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift + img_qkv = self.img_attn.qkv(img_modulated) + img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) + + # prepare txt for attention + txt_modulated = self.txt_norm1(txt) + txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift + txt_qkv = self.txt_attn.qkv(txt_modulated) + txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) + + # run actual attention + q = torch.cat((txt_q, img_q), dim=2) + k = torch.cat((txt_k, img_k), dim=2) + v = torch.cat((txt_v, img_v), dim=2) + + attn = attention(q, k, v, pe=pe) + txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] + + # calculate the img bloks + img = img + img_mod1.gate * self.img_attn.proj(img_attn) + img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) + + # calculate the txt bloks + txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) + txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) + return img, txt + + +class SingleStreamBlock(nn.Module): + """ + A DiT block with parallel linear layers as described in + https://arxiv.org/abs/2302.05442 and adapted modulation interface. + """ + + def __init__( + self, + hidden_size: int, + num_heads: int, + mlp_ratio: float = 4.0, + qk_scale: float = None, + ): + super().__init__() + self.hidden_dim = hidden_size + self.num_heads = num_heads + head_dim = hidden_size // num_heads + self.scale = qk_scale or head_dim**-0.5 + + self.mlp_hidden_dim = int(hidden_size * mlp_ratio) + # qkv and mlp_in + self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) + # proj and mlp_out + self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) + + self.norm = QKNorm(head_dim) + + self.hidden_size = hidden_size + self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) + + self.mlp_act = nn.GELU(approximate="tanh") + self.modulation = Modulation(hidden_size, double=False) + + def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: + mod, _ = self.modulation(vec) + x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift + qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) + + q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + q, k = self.norm(q, k, v) + + # compute attention + attn = attention(q, k, v, pe=pe) + # compute activation in mlp stream, cat again and run second linear layer + output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) + return x + mod.gate * output + + +class LastLayer(nn.Module): + def __init__(self, hidden_size: int, patch_size: int, out_channels: int): + super().__init__() + self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) + self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) + self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) + + def forward(self, x: Tensor, vec: Tensor) -> Tensor: + shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) + x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] + x = self.linear(x) + return x diff --git a/flux/sampling.py b/flux/sampling.py new file mode 100644 index 0000000000000000000000000000000000000000..9b1866eeca5ac7528f13547013a4935f96b4ad4c --- /dev/null +++ b/flux/sampling.py @@ -0,0 +1,161 @@ +import math +from typing import Callable + +import torch +from einops import rearrange, repeat +from torch import Tensor + +from .model import Flux +from .modules.conditioner import HFEmbedder + + +def get_noise( + num_samples: int, + height: int, + width: int, + device: torch.device, + dtype: torch.dtype, + seed: int, +): + return torch.randn( + num_samples, + 16, + # allow for packing + 2 * math.ceil(height / 16), + 2 * math.ceil(width / 16), + device=device, + dtype=dtype, + generator=torch.Generator(device=device).manual_seed(seed), + ) + + +def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str) -> dict[str, Tensor]: + bs, c, h, w = img.shape + if bs == 1 and not isinstance(prompt, str): + bs = len(prompt) + + img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) + if img.shape[0] == 1 and bs > 1: + img = repeat(img, "1 ... -> bs ...", bs=bs) + + img_ids = torch.zeros(h // 2, w // 2, 3) + img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] + img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] + img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) + + if isinstance(prompt, str): + prompt = [prompt] + txt = t5(prompt) + if txt.shape[0] == 1 and bs > 1: + txt = repeat(txt, "1 ... -> bs ...", bs=bs) + txt_ids = torch.zeros(bs, txt.shape[1], 3) + + vec = clip(prompt) + if vec.shape[0] == 1 and bs > 1: + vec = repeat(vec, "1 ... -> bs ...", bs=bs) + + return { + "img": img, + "img_ids": img_ids.to(img.device), + "txt": txt.to(img.device), + "txt_ids": txt_ids.to(img.device), + "vec": vec.to(img.device), + } + + +def time_shift(mu: float, sigma: float, t: Tensor): + return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) + + +def get_lin_function( + x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15 +) -> Callable[[float], float]: + m = (y2 - y1) / (x2 - x1) + b = y1 - m * x1 + return lambda x: m * x + b + + +def get_schedule( + num_steps: int, + image_seq_len: int, + base_shift: float = 0.5, + max_shift: float = 1.15, + shift: bool = True, +) -> list[float]: + # extra step for zero + timesteps = torch.linspace(1, 0, num_steps + 1) + + # shifting the schedule to favor high timesteps for higher signal images + if shift: + # eastimate mu based on linear estimation between two points + mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len) + timesteps = time_shift(mu, 1.0, timesteps) + + return timesteps.tolist() + + +def denoise( + model: Flux, + # model input + img: Tensor, + img_ids: Tensor, + txt: Tensor, + txt_ids: Tensor, + vec: Tensor, + timesteps: list[float], + guidance: float = 4.0, + id_weight=1.0, + id=None, + start_step=0, + uncond_id=None, + true_cfg=1.0, + timestep_to_start_cfg=1, + neg_txt=None, + neg_txt_ids=None, + neg_vec=None, +): + # this is ignored for schnell + guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype) + use_true_cfg = abs(true_cfg - 1.0) > 1e-2 + for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])): + t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) + pred = model( + img=img, + img_ids=img_ids, + txt=txt, + txt_ids=txt_ids, + y=vec, + timesteps=t_vec, + guidance=guidance_vec, + id=id if i >= start_step else None, + id_weight=id_weight, + ) + + if use_true_cfg and i >= timestep_to_start_cfg: + neg_pred = model( + img=img, + img_ids=img_ids, + txt=neg_txt, + txt_ids=neg_txt_ids, + y=neg_vec, + timesteps=t_vec, + guidance=guidance_vec, + id=uncond_id if i >= start_step else None, + id_weight=id_weight, + ) + pred = neg_pred + true_cfg * (pred - neg_pred) + + img = img + (t_prev - t_curr) * pred + + return img + + +def unpack(x: Tensor, height: int, width: int) -> Tensor: + return rearrange( + x, + "b (h w) (c ph pw) -> b c (h ph) (w pw)", + h=math.ceil(height / 16), + w=math.ceil(width / 16), + ph=2, + pw=2, + ) diff --git a/flux/util.py b/flux/util.py new file mode 100644 index 0000000000000000000000000000000000000000..a34cfcf119ac83adf9fc0fe4144a99bc842953ac --- /dev/null +++ b/flux/util.py @@ -0,0 +1,156 @@ +import os +from dataclasses import dataclass + +import torch +from einops import rearrange +from huggingface_hub import hf_hub_download +from safetensors.torch import load_file as load_sft + +from flux.model import Flux, FluxParams +from flux.modules.autoencoder import AutoEncoder, AutoEncoderParams +from flux.modules.conditioner import HFEmbedder + + +@dataclass +class ModelSpec: + params: FluxParams + ae_params: AutoEncoderParams + ckpt_path: str + ae_path: str + repo_id: str + repo_flow: str + repo_ae: str + + +configs = { + "flux-dev": ModelSpec( + repo_id="black-forest-labs/FLUX.1-dev", + repo_flow="flux1-dev.safetensors", + repo_ae="ae.safetensors", + ckpt_path='models/flux1-dev.safetensors', + params=FluxParams( + in_channels=64, + vec_in_dim=768, + context_in_dim=4096, + hidden_size=3072, + mlp_ratio=4.0, + num_heads=24, + depth=19, + depth_single_blocks=38, + axes_dim=[16, 56, 56], + theta=10_000, + qkv_bias=True, + guidance_embed=True, + ), + ae_path='models/ae.safetensors', + ae_params=AutoEncoderParams( + resolution=256, + in_channels=3, + ch=128, + out_ch=3, + ch_mult=[1, 2, 4, 4], + num_res_blocks=2, + z_channels=16, + scale_factor=0.3611, + shift_factor=0.1159, + ), + ), + "flux-schnell": ModelSpec( + repo_id="black-forest-labs/FLUX.1-schnell", + repo_flow="flux1-schnell.safetensors", + repo_ae="ae.safetensors", + ckpt_path=os.getenv("FLUX_SCHNELL"), + params=FluxParams( + in_channels=64, + vec_in_dim=768, + context_in_dim=4096, + hidden_size=3072, + mlp_ratio=4.0, + num_heads=24, + depth=19, + depth_single_blocks=38, + axes_dim=[16, 56, 56], + theta=10_000, + qkv_bias=True, + guidance_embed=False, + ), + ae_path=os.getenv("AE"), + ae_params=AutoEncoderParams( + resolution=256, + in_channels=3, + ch=128, + out_ch=3, + ch_mult=[1, 2, 4, 4], + num_res_blocks=2, + z_channels=16, + scale_factor=0.3611, + shift_factor=0.1159, + ), + ), +} + + +def print_load_warning(missing: list[str], unexpected: list[str]) -> None: + if len(missing) > 0 and len(unexpected) > 0: + print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) + print("\n" + "-" * 79 + "\n") + print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) + elif len(missing) > 0: + print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) + elif len(unexpected) > 0: + print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) + + +def load_flow_model(name: str, device: str = "cuda", hf_download: bool = True): + # Loading Flux + print("Init model") + ckpt_path = configs[name].ckpt_path + if ( + not os.path.exists(ckpt_path) + and configs[name].repo_id is not None + and configs[name].repo_flow is not None + and hf_download + ): + ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow, local_dir='models') + + with torch.device(device): + model = Flux(configs[name].params).to(torch.bfloat16) + + if ckpt_path is not None: + print("Loading checkpoint") + # load_sft doesn't support torch.device + sd = load_sft(ckpt_path, device=str(device)) + missing, unexpected = model.load_state_dict(sd, strict=False) + print_load_warning(missing, unexpected) + return model + + +def load_t5(device: str = "cuda", max_length: int = 512) -> HFEmbedder: + # max length 64, 128, 256 and 512 should work (if your sequence is short enough) + return HFEmbedder("xlabs-ai/xflux_text_encoders", max_length=max_length, torch_dtype=torch.bfloat16).to(device) + + +def load_clip(device: str = "cuda") -> HFEmbedder: + return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device) + + +def load_ae(name: str, device: str = "cuda", hf_download: bool = True) -> AutoEncoder: + ckpt_path = configs[name].ae_path + if ( + not os.path.exists(ckpt_path) + and configs[name].repo_id is not None + and configs[name].repo_ae is not None + and hf_download + ): + ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_ae, local_dir='models') + + # Loading the autoencoder + print("Init AE") + with torch.device(device): + ae = AutoEncoder(configs[name].ae_params) + + if ckpt_path is not None: + sd = load_sft(ckpt_path, device=str(device)) + missing, unexpected = ae.load_state_dict(sd, strict=False) + print_load_warning(missing, unexpected) + return ae diff --git a/models/.gitkeep b/models/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/pulid/attention_processor.py b/pulid/attention_processor.py new file mode 100644 index 0000000000000000000000000000000000000000..fb4f9da179952101e745861c0b112d1e592b2c84 --- /dev/null +++ b/pulid/attention_processor.py @@ -0,0 +1,422 @@ +# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py +import torch +import torch.nn as nn +import torch.nn.functional as F + +NUM_ZERO = 0 +ORTHO = False +ORTHO_v2 = False + + +class AttnProcessor(nn.Module): + def __init__(self): + super().__init__() + + def __call__( + self, + attn, + hidden_states, + encoder_hidden_states=None, + attention_mask=None, + temb=None, + id_embedding=None, + id_scale=1.0, + ): + residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + + attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class IDAttnProcessor(nn.Module): + r""" + Attention processor for ID-Adapater. + Args: + hidden_size (`int`): + The hidden size of the attention layer. + cross_attention_dim (`int`): + The number of channels in the `encoder_hidden_states`. + scale (`float`, defaults to 1.0): + the weight scale of image prompt. + """ + + def __init__(self, hidden_size, cross_attention_dim=None): + super().__init__() + self.id_to_k = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + self.id_to_v = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + + def __call__( + self, + attn, + hidden_states, + encoder_hidden_states=None, + attention_mask=None, + temb=None, + id_embedding=None, + id_scale=1.0, + ): + residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + + attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + + # for id-adapter + if id_embedding is not None: + if NUM_ZERO == 0: + id_key = self.id_to_k(id_embedding) + id_value = self.id_to_v(id_embedding) + else: + zero_tensor = torch.zeros( + (id_embedding.size(0), NUM_ZERO, id_embedding.size(-1)), + dtype=id_embedding.dtype, + device=id_embedding.device, + ) + id_key = self.id_to_k(torch.cat((id_embedding, zero_tensor), dim=1)) + id_value = self.id_to_v(torch.cat((id_embedding, zero_tensor), dim=1)) + + id_key = attn.head_to_batch_dim(id_key).to(query.dtype) + id_value = attn.head_to_batch_dim(id_value).to(query.dtype) + + id_attention_probs = attn.get_attention_scores(query, id_key, None) + id_hidden_states = torch.bmm(id_attention_probs, id_value) + id_hidden_states = attn.batch_to_head_dim(id_hidden_states) + + if not ORTHO: + hidden_states = hidden_states + id_scale * id_hidden_states + else: + projection = ( + torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True) + / torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True) + * hidden_states + ) + orthogonal = id_hidden_states - projection + hidden_states = hidden_states + id_scale * orthogonal + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class AttnProcessor2_0(nn.Module): + r""" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). + """ + + def __init__(self): + super().__init__() + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + + def __call__( + self, + attn, + hidden_states, + encoder_hidden_states=None, + attention_mask=None, + temb=None, + id_embedding=None, + id_scale=1.0, + ): + residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class IDAttnProcessor2_0(torch.nn.Module): + r""" + Attention processor for ID-Adapater for PyTorch 2.0. + Args: + hidden_size (`int`): + The hidden size of the attention layer. + cross_attention_dim (`int`): + The number of channels in the `encoder_hidden_states`. + """ + + def __init__(self, hidden_size, cross_attention_dim=None): + super().__init__() + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + + self.id_to_k = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + self.id_to_v = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + + def __call__( + self, + attn, + hidden_states, + encoder_hidden_states=None, + attention_mask=None, + temb=None, + id_embedding=None, + id_scale=1.0, + ): + residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # for id embedding + if id_embedding is not None: + if NUM_ZERO == 0: + id_key = self.id_to_k(id_embedding).to(query.dtype) + id_value = self.id_to_v(id_embedding).to(query.dtype) + else: + zero_tensor = torch.zeros( + (id_embedding.size(0), NUM_ZERO, id_embedding.size(-1)), + dtype=id_embedding.dtype, + device=id_embedding.device, + ) + id_key = self.id_to_k(torch.cat((id_embedding, zero_tensor), dim=1)).to(query.dtype) + id_value = self.id_to_v(torch.cat((id_embedding, zero_tensor), dim=1)).to(query.dtype) + + id_key = id_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + id_value = id_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + id_hidden_states = F.scaled_dot_product_attention( + query, id_key, id_value, attn_mask=None, dropout_p=0.0, is_causal=False + ) + + id_hidden_states = id_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + id_hidden_states = id_hidden_states.to(query.dtype) + + if not ORTHO and not ORTHO_v2: + hidden_states = hidden_states + id_scale * id_hidden_states + elif ORTHO_v2: + orig_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + id_hidden_states = id_hidden_states.to(torch.float32) + attn_map = query @ id_key.transpose(-2, -1) + attn_mean = attn_map.softmax(dim=-1).mean(dim=1) + attn_mean = attn_mean[:, :, :5].sum(dim=-1, keepdim=True) + projection = ( + torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True) + / torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True) + * hidden_states + ) + orthogonal = id_hidden_states + (attn_mean - 1) * projection + hidden_states = hidden_states + id_scale * orthogonal + hidden_states = hidden_states.to(orig_dtype) + else: + orig_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + id_hidden_states = id_hidden_states.to(torch.float32) + projection = ( + torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True) + / torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True) + * hidden_states + ) + orthogonal = id_hidden_states - projection + hidden_states = hidden_states + id_scale * orthogonal + hidden_states = hidden_states.to(orig_dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states diff --git a/pulid/encoders.py b/pulid/encoders.py new file mode 100644 index 0000000000000000000000000000000000000000..47dff3dbcb0167beb09aa9df8c4ffdc560042a9f --- /dev/null +++ b/pulid/encoders.py @@ -0,0 +1,64 @@ +import torch +import torch.nn as nn + + +class IDEncoder(nn.Module): + def __init__(self, width=1280, context_dim=2048, num_token=5): + super().__init__() + self.num_token = num_token + self.context_dim = context_dim + h1 = min((context_dim * num_token) // 4, 1024) + h2 = min((context_dim * num_token) // 2, 1024) + self.body = nn.Sequential( + nn.Linear(width, h1), + nn.LayerNorm(h1), + nn.LeakyReLU(), + nn.Linear(h1, h2), + nn.LayerNorm(h2), + nn.LeakyReLU(), + nn.Linear(h2, context_dim * num_token), + ) + + for i in range(5): + setattr( + self, + f'mapping_{i}', + nn.Sequential( + nn.Linear(1024, 1024), + nn.LayerNorm(1024), + nn.LeakyReLU(), + nn.Linear(1024, 1024), + nn.LayerNorm(1024), + nn.LeakyReLU(), + nn.Linear(1024, context_dim), + ), + ) + + setattr( + self, + f'mapping_patch_{i}', + nn.Sequential( + nn.Linear(1024, 1024), + nn.LayerNorm(1024), + nn.LeakyReLU(), + nn.Linear(1024, 1024), + nn.LayerNorm(1024), + nn.LeakyReLU(), + nn.Linear(1024, context_dim), + ), + ) + + def forward(self, x, y): + # x shape [N, C] + x = self.body(x) + x = x.reshape(-1, self.num_token, self.context_dim) + + hidden_states = () + for i, emb in enumerate(y): + hidden_state = getattr(self, f'mapping_{i}')(emb[:, :1]) + getattr(self, f'mapping_patch_{i}')( + emb[:, 1:] + ).mean(dim=1, keepdim=True) + hidden_states += (hidden_state,) + hidden_states = torch.cat(hidden_states, dim=1) + + return torch.cat([x, hidden_states], dim=1) diff --git a/pulid/encoders_flux.py b/pulid/encoders_flux.py new file mode 100644 index 0000000000000000000000000000000000000000..7891fb31c717c71b257637eec2b4fc4d136be114 --- /dev/null +++ b/pulid/encoders_flux.py @@ -0,0 +1,207 @@ +import math + +import torch +import torch.nn as nn + + +# FFN +def FeedForward(dim, mult=4): + inner_dim = int(dim * mult) + return nn.Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, inner_dim, bias=False), + nn.GELU(), + nn.Linear(inner_dim, dim, bias=False), + ) + + +def reshape_tensor(x, heads): + bs, length, width = x.shape + # (bs, length, width) --> (bs, length, n_heads, dim_per_head) + x = x.view(bs, length, heads, -1) + # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) + x = x.transpose(1, 2) + # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) + x = x.reshape(bs, heads, length, -1) + return x + + +class PerceiverAttentionCA(nn.Module): + def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048): + super().__init__() + self.scale = dim_head ** -0.5 + self.dim_head = dim_head + self.heads = heads + inner_dim = dim_head * heads + + self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) + self.norm2 = nn.LayerNorm(dim) + + self.to_q = nn.Linear(dim, inner_dim, bias=False) + self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) + self.to_out = nn.Linear(inner_dim, dim, bias=False) + + def forward(self, x, latents): + """ + Args: + x (torch.Tensor): image features + shape (b, n1, D) + latent (torch.Tensor): latent features + shape (b, n2, D) + """ + x = self.norm1(x) + latents = self.norm2(latents) + + b, seq_len, _ = latents.shape + + q = self.to_q(latents) + k, v = self.to_kv(x).chunk(2, dim=-1) + + q = reshape_tensor(q, self.heads) + k = reshape_tensor(k, self.heads) + v = reshape_tensor(v, self.heads) + + # attention + scale = 1 / math.sqrt(math.sqrt(self.dim_head)) + weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards + weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) + out = weight @ v + + out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) + + return self.to_out(out) + + +class PerceiverAttention(nn.Module): + def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None): + super().__init__() + self.scale = dim_head ** -0.5 + self.dim_head = dim_head + self.heads = heads + inner_dim = dim_head * heads + + self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) + self.norm2 = nn.LayerNorm(dim) + + self.to_q = nn.Linear(dim, inner_dim, bias=False) + self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) + self.to_out = nn.Linear(inner_dim, dim, bias=False) + + def forward(self, x, latents): + """ + Args: + x (torch.Tensor): image features + shape (b, n1, D) + latent (torch.Tensor): latent features + shape (b, n2, D) + """ + x = self.norm1(x) + latents = self.norm2(latents) + + b, seq_len, _ = latents.shape + + q = self.to_q(latents) + kv_input = torch.cat((x, latents), dim=-2) + k, v = self.to_kv(kv_input).chunk(2, dim=-1) + + q = reshape_tensor(q, self.heads) + k = reshape_tensor(k, self.heads) + v = reshape_tensor(v, self.heads) + + # attention + scale = 1 / math.sqrt(math.sqrt(self.dim_head)) + weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards + weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) + out = weight @ v + + out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) + + return self.to_out(out) + + +class IDFormer(nn.Module): + """ + - perceiver resampler like arch (compared with previous MLP-like arch) + - we concat id embedding (generated by arcface) and query tokens as latents + - latents will attend each other and interact with vit features through cross-attention + - vit features are multi-scaled and inserted into IDFormer in order, currently, each scale corresponds to two + IDFormer layers + """ + def __init__( + self, + dim=1024, + depth=10, + dim_head=64, + heads=16, + num_id_token=5, + num_queries=32, + output_dim=2048, + ff_mult=4, + ): + super().__init__() + + self.num_id_token = num_id_token + self.dim = dim + self.num_queries = num_queries + assert depth % 5 == 0 + self.depth = depth // 5 + scale = dim ** -0.5 + + self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale) + self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim)) + + self.layers = nn.ModuleList([]) + for _ in range(depth): + self.layers.append( + nn.ModuleList( + [ + PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), + FeedForward(dim=dim, mult=ff_mult), + ] + ) + ) + + for i in range(5): + setattr( + self, + f'mapping_{i}', + nn.Sequential( + nn.Linear(1024, 1024), + nn.LayerNorm(1024), + nn.LeakyReLU(), + nn.Linear(1024, 1024), + nn.LayerNorm(1024), + nn.LeakyReLU(), + nn.Linear(1024, dim), + ), + ) + + self.id_embedding_mapping = nn.Sequential( + nn.Linear(1280, 1024), + nn.LayerNorm(1024), + nn.LeakyReLU(), + nn.Linear(1024, 1024), + nn.LayerNorm(1024), + nn.LeakyReLU(), + nn.Linear(1024, dim * num_id_token), + ) + + def forward(self, x, y): + + latents = self.latents.repeat(x.size(0), 1, 1) + + x = self.id_embedding_mapping(x) + x = x.reshape(-1, self.num_id_token, self.dim) + + latents = torch.cat((latents, x), dim=1) + + for i in range(5): + vit_feature = getattr(self, f'mapping_{i}')(y[i]) + ctx_feature = torch.cat((x, vit_feature), dim=1) + for attn, ff in self.layers[i * self.depth: (i + 1) * self.depth]: + latents = attn(ctx_feature, latents) + latents + latents = ff(latents) + latents + + latents = latents[:, :self.num_queries] + latents = latents @ self.proj_out + return latents diff --git a/pulid/pipeline.py b/pulid/pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..6aa3e6d9c8024620df7448ccff3520221ef078ab --- /dev/null +++ b/pulid/pipeline.py @@ -0,0 +1,232 @@ +import gc + +import cv2 +import insightface +import torch +import torch.nn as nn +from basicsr.utils import img2tensor, tensor2img +from diffusers import ( + DPMSolverMultistepScheduler, + StableDiffusionXLPipeline, + UNet2DConditionModel, +) +from facexlib.parsing import init_parsing_model +from facexlib.utils.face_restoration_helper import FaceRestoreHelper +from huggingface_hub import hf_hub_download, snapshot_download +from insightface.app import FaceAnalysis +from safetensors.torch import load_file +from torchvision.transforms import InterpolationMode +from torchvision.transforms.functional import normalize, resize + +from eva_clip import create_model_and_transforms +from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD +from pulid.encoders import IDEncoder +from pulid.utils import is_torch2_available + +if is_torch2_available(): + from pulid.attention_processor import AttnProcessor2_0 as AttnProcessor + from pulid.attention_processor import IDAttnProcessor2_0 as IDAttnProcessor +else: + from pulid.attention_processor import AttnProcessor, IDAttnProcessor + + +class PuLIDPipeline: + def __init__(self, *args, **kwargs): + super().__init__() + self.device = 'cuda' + sdxl_base_repo = 'stabilityai/stable-diffusion-xl-base-1.0' + sdxl_lightning_repo = 'ByteDance/SDXL-Lightning' + self.sdxl_base_repo = sdxl_base_repo + + # load base model + unet = UNet2DConditionModel.from_config(sdxl_base_repo, subfolder='unet').to(self.device, torch.float16) + unet.load_state_dict( + load_file( + hf_hub_download(sdxl_lightning_repo, 'sdxl_lightning_4step_unet.safetensors'), device=self.device + ) + ) + unet.half() + self.hack_unet_attn_layers(unet) + self.pipe = StableDiffusionXLPipeline.from_pretrained( + sdxl_base_repo, unet=unet, torch_dtype=torch.float16, variant="fp16" + ).to(self.device) + self.pipe.watermark = None + + # scheduler + self.pipe.scheduler = DPMSolverMultistepScheduler.from_config( + self.pipe.scheduler.config, timestep_spacing="trailing" + ) + + # ID adapters + self.id_adapter = IDEncoder().to(self.device) + + # preprocessors + # face align and parsing + self.face_helper = FaceRestoreHelper( + upscale_factor=1, + face_size=512, + crop_ratio=(1, 1), + det_model='retinaface_resnet50', + save_ext='png', + device=self.device, + ) + self.face_helper.face_parse = None + self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device) + # clip-vit backbone + model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True) + model = model.visual + self.clip_vision_model = model.to(self.device) + eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN) + eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD) + if not isinstance(eva_transform_mean, (list, tuple)): + eva_transform_mean = (eva_transform_mean,) * 3 + if not isinstance(eva_transform_std, (list, tuple)): + eva_transform_std = (eva_transform_std,) * 3 + self.eva_transform_mean = eva_transform_mean + self.eva_transform_std = eva_transform_std + # antelopev2 + snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2') + self.app = FaceAnalysis( + name='antelopev2', root='.', providers=['CPUExecutionProvider'] + ) + self.app.prepare(ctx_id=0, det_size=(640, 640)) + self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx', providers=['CPUExecutionProvider']) + self.handler_ante.prepare(ctx_id=0) + + print('load done') + + gc.collect() + torch.cuda.empty_cache() + + self.load_pretrain() + + # other configs + self.debug_img_list = [] + + def hack_unet_attn_layers(self, unet): + id_adapter_attn_procs = {} + for name, _ in unet.attn_processors.items(): + cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim + if name.startswith("mid_block"): + hidden_size = unet.config.block_out_channels[-1] + elif name.startswith("up_blocks"): + block_id = int(name[len("up_blocks.")]) + hidden_size = list(reversed(unet.config.block_out_channels))[block_id] + elif name.startswith("down_blocks"): + block_id = int(name[len("down_blocks.")]) + hidden_size = unet.config.block_out_channels[block_id] + if cross_attention_dim is not None: + id_adapter_attn_procs[name] = IDAttnProcessor( + hidden_size=hidden_size, + cross_attention_dim=cross_attention_dim, + ).to(unet.device) + else: + id_adapter_attn_procs[name] = AttnProcessor() + unet.set_attn_processor(id_adapter_attn_procs) + self.id_adapter_attn_layers = nn.ModuleList(unet.attn_processors.values()) + + def load_pretrain(self): + hf_hub_download('guozinan/PuLID', 'pulid_v1.bin', local_dir='models') + ckpt_path = 'models/pulid_v1.bin' + state_dict = torch.load(ckpt_path, map_location='cpu') + state_dict_dict = {} + for k, v in state_dict.items(): + module = k.split('.')[0] + state_dict_dict.setdefault(module, {}) + new_k = k[len(module) + 1 :] + state_dict_dict[module][new_k] = v + + for module in state_dict_dict: + print(f'loading from {module}') + getattr(self, module).load_state_dict(state_dict_dict[module], strict=True) + + def to_gray(self, img): + x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3] + x = x.repeat(1, 3, 1, 1) + return x + + def get_id_embedding(self, image): + """ + Args: + image: numpy rgb image, range [0, 255] + """ + self.face_helper.clean_all() + image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) + # get antelopev2 embedding + face_info = self.app.get(image_bgr) + if len(face_info) > 0: + face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * x['bbox'][3] - x['bbox'][1])[ + -1 + ] # only use the maximum face + id_ante_embedding = face_info['embedding'] + self.debug_img_list.append( + image[ + int(face_info['bbox'][1]) : int(face_info['bbox'][3]), + int(face_info['bbox'][0]) : int(face_info['bbox'][2]), + ] + ) + else: + id_ante_embedding = None + + # using facexlib to detect and align face + self.face_helper.read_image(image_bgr) + self.face_helper.get_face_landmarks_5(only_center_face=True) + self.face_helper.align_warp_face() + if len(self.face_helper.cropped_faces) == 0: + raise RuntimeError('facexlib align face fail') + align_face = self.face_helper.cropped_faces[0] + # incase insightface didn't detect face + if id_ante_embedding is None: + print('fail to detect face using insightface, extract embedding on align face') + id_ante_embedding = self.handler_ante.get_feat(align_face) + + id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device) + if id_ante_embedding.ndim == 1: + id_ante_embedding = id_ante_embedding.unsqueeze(0) + + # parsing + input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 + input = input.to(self.device) + parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] + parsing_out = parsing_out.argmax(dim=1, keepdim=True) + bg_label = [0, 16, 18, 7, 8, 9, 14, 15] + bg = sum(parsing_out == i for i in bg_label).bool() + white_image = torch.ones_like(input) + # only keep the face features + face_features_image = torch.where(bg, white_image, self.to_gray(input)) + self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False)) + + # transform img before sending to eva-clip-vit + face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC) + face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std) + id_cond_vit, id_vit_hidden = self.clip_vision_model( + face_features_image, return_all_features=False, return_hidden=True, shuffle=False + ) + id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True) + id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm) + + id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1) + id_uncond = torch.zeros_like(id_cond) + id_vit_hidden_uncond = [] + for layer_idx in range(0, len(id_vit_hidden)): + id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx])) + + id_embedding = self.id_adapter(id_cond, id_vit_hidden) + uncond_id_embedding = self.id_adapter(id_uncond, id_vit_hidden_uncond) + + # return id_embedding + return torch.cat((uncond_id_embedding, id_embedding), dim=0) + + def inference(self, prompt, size, prompt_n='', image_embedding=None, id_scale=1.0, guidance_scale=1.2, steps=4): + images = self.pipe( + prompt=prompt, + negative_prompt=prompt_n, + num_images_per_prompt=size[0], + height=size[1], + width=size[2], + num_inference_steps=steps, + guidance_scale=guidance_scale, + cross_attention_kwargs={'id_embedding': image_embedding, 'id_scale': id_scale}, + ).images + + return images diff --git a/pulid/pipeline_flux.py b/pulid/pipeline_flux.py new file mode 100644 index 0000000000000000000000000000000000000000..82a7b70be141af79c44072977be204a576ffc66b --- /dev/null +++ b/pulid/pipeline_flux.py @@ -0,0 +1,188 @@ +import gc + +import cv2 +import insightface +import torch +import torch.nn as nn +from basicsr.utils import img2tensor, tensor2img +from facexlib.parsing import init_parsing_model +from facexlib.utils.face_restoration_helper import FaceRestoreHelper +from huggingface_hub import hf_hub_download, snapshot_download +from insightface.app import FaceAnalysis +from safetensors.torch import load_file +from torchvision.transforms import InterpolationMode +from torchvision.transforms.functional import normalize, resize + +from eva_clip import create_model_and_transforms +from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD +from pulid.encoders_flux import IDFormer, PerceiverAttentionCA + + +class PuLIDPipeline(nn.Module): + def __init__(self, dit, device, weight_dtype=torch.bfloat16, *args, **kwargs): + super().__init__() + self.device = device + self.weight_dtype = weight_dtype + double_interval = 2 + single_interval = 4 + + # init encoder + self.pulid_encoder = IDFormer().to(self.device, self.weight_dtype) + + num_ca = 19 // double_interval + 38 // single_interval + if 19 % double_interval != 0: + num_ca += 1 + if 38 % single_interval != 0: + num_ca += 1 + self.pulid_ca = nn.ModuleList([ + PerceiverAttentionCA().to(self.device, self.weight_dtype) for _ in range(num_ca) + ]) + + dit.pulid_ca = self.pulid_ca + dit.pulid_double_interval = double_interval + dit.pulid_single_interval = single_interval + + # preprocessors + # face align and parsing + self.face_helper = FaceRestoreHelper( + upscale_factor=1, + face_size=512, + crop_ratio=(1, 1), + det_model='retinaface_resnet50', + save_ext='png', + device=self.device, + ) + self.face_helper.face_parse = None + self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device) + # clip-vit backbone + model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True) + model = model.visual + self.clip_vision_model = model.to(self.device, dtype=self.weight_dtype) + eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN) + eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD) + if not isinstance(eva_transform_mean, (list, tuple)): + eva_transform_mean = (eva_transform_mean,) * 3 + if not isinstance(eva_transform_std, (list, tuple)): + eva_transform_std = (eva_transform_std,) * 3 + self.eva_transform_mean = eva_transform_mean + self.eva_transform_std = eva_transform_std + # antelopev2 + snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2') + self.app = FaceAnalysis( + name='antelopev2', root='.', providers=['CPUExecutionProvider'] + ) + self.app.prepare(ctx_id=0, det_size=(640, 640)) + self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx', providers=['CPUExecutionProvider']) + self.handler_ante.prepare(ctx_id=0) + + gc.collect() + torch.cuda.empty_cache() + + # self.load_pretrain() + + # other configs + self.debug_img_list = [] + + def load_pretrain(self, pretrain_path=None): + hf_hub_download('guozinan/PuLID', 'pulid_flux_v0.9.0.safetensors', local_dir='models') + ckpt_path = 'models/pulid_flux_v0.9.0.safetensors' + if pretrain_path is not None: + ckpt_path = pretrain_path + state_dict = load_file(ckpt_path) + state_dict_dict = {} + for k, v in state_dict.items(): + module = k.split('.')[0] + state_dict_dict.setdefault(module, {}) + new_k = k[len(module) + 1:] + state_dict_dict[module][new_k] = v + + for module in state_dict_dict: + print(f'loading from {module}') + getattr(self, module).load_state_dict(state_dict_dict[module], strict=True) + + del state_dict + del state_dict_dict + + def to_gray(self, img): + x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3] + x = x.repeat(1, 3, 1, 1) + return x + + def get_id_embedding(self, image, cal_uncond=False): + """ + Args: + image: numpy rgb image, range [0, 255] + """ + self.face_helper.clean_all() + self.debug_img_list = [] + image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) + # get antelopev2 embedding + # for k in self.app.models.keys(): + # self.app.models[k].session.set_providers(['CUDAExecutionProvider']) + face_info = self.app.get(image_bgr) + if len(face_info) > 0: + face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[ + -1 + ] # only use the maximum face + id_ante_embedding = face_info['embedding'] + self.debug_img_list.append( + image[ + int(face_info['bbox'][1]) : int(face_info['bbox'][3]), + int(face_info['bbox'][0]) : int(face_info['bbox'][2]), + ] + ) + else: + id_ante_embedding = None + + # using facexlib to detect and align face + self.face_helper.read_image(image_bgr) + self.face_helper.get_face_landmarks_5(only_center_face=True) + self.face_helper.align_warp_face() + if len(self.face_helper.cropped_faces) == 0: + raise RuntimeError('facexlib align face fail') + align_face = self.face_helper.cropped_faces[0] + # incase insightface didn't detect face + if id_ante_embedding is None: + print('fail to detect face using insightface, extract embedding on align face') + # self.handler_ante.session.set_providers(['CUDAExecutionProvider']) + id_ante_embedding = self.handler_ante.get_feat(align_face) + + id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device, self.weight_dtype) + if id_ante_embedding.ndim == 1: + id_ante_embedding = id_ante_embedding.unsqueeze(0) + + # parsing + input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 + input = input.to(self.device) + parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] + parsing_out = parsing_out.argmax(dim=1, keepdim=True) + bg_label = [0, 16, 18, 7, 8, 9, 14, 15] + bg = sum(parsing_out == i for i in bg_label).bool() + white_image = torch.ones_like(input) + # only keep the face features + face_features_image = torch.where(bg, white_image, self.to_gray(input)) + self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False)) + + # transform img before sending to eva-clip-vit + face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC) + face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std) + id_cond_vit, id_vit_hidden = self.clip_vision_model( + face_features_image.to(self.weight_dtype), return_all_features=False, return_hidden=True, shuffle=False + ) + id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True) + id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm) + + id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1) + + id_embedding = self.pulid_encoder(id_cond, id_vit_hidden) + + if not cal_uncond: + return id_embedding, None + + id_uncond = torch.zeros_like(id_cond) + id_vit_hidden_uncond = [] + for layer_idx in range(0, len(id_vit_hidden)): + id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx])) + uncond_id_embedding = self.pulid_encoder(id_uncond, id_vit_hidden_uncond) + + return id_embedding, uncond_id_embedding diff --git a/pulid/utils.py b/pulid/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..17d8b084de80c058596a83f771bb947462e8b0a1 --- /dev/null +++ b/pulid/utils.py @@ -0,0 +1,76 @@ +import importlib +import os +import random + +import cv2 +import numpy as np +import torch +import torch.nn.functional as F +from transformers import PretrainedConfig + + +def seed_everything(seed): + os.environ["PL_GLOBAL_SEED"] = str(seed) + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + + +def is_torch2_available(): + return hasattr(F, "scaled_dot_product_attention") + + +def instantiate_from_config(config): + if "target" not in config: + if config == '__is_first_stage__' or config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", {})) + + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) + + +def drop_seq_token(seq, drop_rate=0.5): + idx = torch.randperm(seq.size(1)) + num_keep_tokens = int(len(idx) * (1 - drop_rate)) + idx = idx[:num_keep_tokens] + seq = seq[:, idx] + return seq + + +def import_model_class_from_model_name_or_path( + pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" +): + text_encoder_config = PretrainedConfig.from_pretrained( + pretrained_model_name_or_path, subfolder=subfolder, revision=revision + ) + model_class = text_encoder_config.architectures[0] + + if model_class == "CLIPTextModel": + from transformers import CLIPTextModel + + return CLIPTextModel + elif model_class == "CLIPTextModelWithProjection": # noqa RET505 + from transformers import CLIPTextModelWithProjection + + return CLIPTextModelWithProjection + else: + raise ValueError(f"{model_class} is not supported.") + + +def resize_numpy_image_long(image, resize_long_edge=768): + h, w = image.shape[:2] + if max(h, w) <= resize_long_edge: + return image + k = resize_long_edge / max(h, w) + h = int(h * k) + w = int(w * k) + image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) + return image diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..edd840cbc6913695e076b07bd25072a4e80fc700 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,20 @@ +diffusers==0.25.0 +torch==2.1.0 +torchvision==0.16.0 +transformers==4.43.3 +opencv-python +einops +ftfy +basicsr +facexlib +insightface +onnx==1.13.1 +onnxruntime-gpu +onnxruntime==1.14.1 +accelerate +huggingface-hub +timm +SentencePiece +fire +safetensors +numpy==1.24.1 diff --git a/themes.py b/themes.py new file mode 100644 index 0000000000000000000000000000000000000000..081b33fd493061f4853a19edc0d62aa2925b0f97 --- /dev/null +++ b/themes.py @@ -0,0 +1,55 @@ +from __future__ import annotations +from typing import Iterable +from gradio.themes.base import Base +from gradio.themes.utils import colors, fonts, sizes + +class IndonesiaTheme(Base): + def __init__( + self, + *, + primary_hue: colors.Color | str = colors.red, + secondary_hue: colors.Color | str = colors.gray, + neutral_hue: colors.Color | str = colors.gray, + spacing_size: sizes.Size | str = sizes.spacing_md, + radius_size: sizes.Size | str = sizes.radius_md, + text_size: sizes.Size | str = sizes.text_lg, + font: fonts.Font + | str + | Iterable[fonts.Font | str] = ( + fonts.GoogleFont("Quicksand"), + "ui-sans-serif", + "sans-serif", + ), + font_mono: fonts.Font + | str + | Iterable[fonts.Font | str] = ( + fonts.GoogleFont("IBM Plex Mono"), + "ui-monospace", + "monospace", + ), + ): + super().__init__( + primary_hue=primary_hue, + secondary_hue=secondary_hue, + neutral_hue=neutral_hue, + spacing_size=spacing_size, + radius_size=radius_size, + text_size=text_size, + font=font, + font_mono=font_mono, + ) + super().set( + body_background_fill="linear-gradient(to bottom, #e0e0e0, #7d7d7d)", # Gradasi abu-abu muda ke abu-abu tua + body_background_fill_dark="linear-gradient(to bottom, #7d7d7d, #4a4a4a)", # Gradasi abu-abu tua ke lebih gelap untuk dark mode + button_primary_background_fill="linear-gradient(90deg, #d84a4a, #b33030)", # Merah ke merah tua + button_primary_background_fill_hover="linear-gradient(90deg, #e85b5b, #cc4b4b)", # Merah lebih terang untuk hover + button_primary_text_color="white", + button_primary_background_fill_dark="linear-gradient(90deg, #b33030, #8f1f1f)", # Merah tua untuk dark mode + slider_color="*secondary_300", + slider_color_dark="*secondary_600", + block_title_text_weight="600", + block_border_width="3px", + block_shadow="*shadow_drop_lg", + button_shadow="*shadow_drop_lg", + button_large_padding="32px", + )