Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import kornia | |
from einops import rearrange | |
import torch.nn.init as init | |
def leaky_relu(p=0.2): | |
return nn.LeakyReLU(p, inplace=True) | |
class Residual(nn.Module): | |
def __init__(self, | |
fn): | |
super().__init__() | |
self.fn = fn | |
def forward(self, x, **kwargs): | |
return x + self.fn(x, **kwargs) | |
class EqualLinear(nn.Module): | |
def __init__(self, in_dim, out_dim, lr_mul=1, bias=True, pre_norm=False, activate = False): | |
super().__init__() | |
self.weight = nn.Parameter(torch.randn(out_dim, in_dim)) | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_dim)) | |
self.lr_mul = lr_mul | |
self.pre_norm = pre_norm | |
if pre_norm: | |
self.norm = nn.LayerNorm(in_dim, eps=1e-5) | |
self.activate = activate | |
if self.activate == True: | |
self.non_linear = leaky_relu() | |
def forward(self, input): | |
if hasattr(self, 'pre_norm') and self.pre_norm: | |
out = self.norm(input) | |
out = F.linear(out, self.weight * self.lr_mul, bias=self.bias * self.lr_mul) | |
else: | |
out = F.linear(input, self.weight * self.lr_mul, bias=self.bias * self.lr_mul) | |
if self.activate == True: | |
out = self.non_linear(out) | |
return out | |
class StyleVectorizer(nn.Module): | |
def __init__(self, dim_in, dim_out, depth, lr_mul = 0.1): | |
super().__init__() | |
layers = [] | |
for i in range(depth): | |
if i == 0: | |
layers.extend([EqualLinear(dim_in, dim_out, lr_mul, pre_norm=False, activate = True)]) | |
elif i == depth - 1: | |
layers.extend([EqualLinear(dim_out, dim_out, lr_mul, pre_norm=True, activate = False)]) | |
else: | |
layers.extend([Residual(EqualLinear(dim_out, dim_out, lr_mul, pre_norm=True, activate = True))]) | |
self.net = nn.Sequential(*layers) | |
self.norm = nn.LayerNorm(dim_out, eps=1e-5) | |
def forward(self, x): | |
return self.norm(self.net(x)) | |