import streamlit as st import torch from langchain import HuggingFacePipeline, PromptTemplate from langchain.chains import RetrievalQA from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import RecursiveCharacterTextSplitter from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import os import re import pickle import fitz # PyMuPDF from langchain.schema import Document import langdetect def clean_output(output: str) -> str: print("Raw output:", output) # Debugging line start_index = output.find('[/INST]') + len('[/INST]') cleaned_output = output[start_index:].strip() print("Cleaned output:", cleaned_output) # Debugging line return cleaned_output DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" def split_text_into_paragraphs(text_content): paragraphs = text_content.split('#') return [paragraph.strip() for paragraph in paragraphs if paragraph.strip()] def sanitize_filename(filename): sanitized_name = re.sub(r'[^a-zA-Z0-9_-]', '_', filename) return sanitized_name[:63] def extract_text_from_pdf(pdf_path): text_content = '' with fitz.open(pdf_path) as pdf_document: for page_num in range(len(pdf_document)): page = pdf_document[page_num] text_content += page.get_text() return text_content def detect_language(text): try: return langdetect.detect(text) except: return "en" # Default to English if detection fails def process_pdf_file(filename, pdf_path, embeddings, llm, prompt): print(f'\nProcessing: {pdf_path}') text_content = extract_text_from_pdf(pdf_path) language = detect_language(text_content) print(f"Detected language: {language}") paragraphs = split_text_into_paragraphs(text_content) documents = [Document(page_content=paragraph, metadata={"language": language, "source": filename}) for paragraph in paragraphs] print(f"Number of documents created: {len(documents)}") collection_name = sanitize_filename(os.path.basename(filename)) db = Chroma.from_documents(documents, embeddings, collection_name=collection_name) retriever = db.as_retriever(search_kwargs={"k": 2}) qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, chain_type_kwargs={"prompt": prompt}, ) print(f"QA chain created for {filename}") return qa_chain, language SYSTEM_PROMPT = """ Use the provided context to answer the question clearly and concisely. Do not repeat the context in your answer. """ def generate_prompt(prompt: str, system_prompt: str = SYSTEM_PROMPT) -> str: return f""" [INST] <> {system_prompt} <> {prompt} [/INST] """.strip() def main(): # Streamlit UI st.title("PDF-Powered Chatbot") # File Uploader uploaded_files = st.file_uploader("Upload PDF files", type="pdf", accept_multiple_files=True) # Model Loading model_pickle_path = '/kaggle/working/model.pkl' if os.path.exists(model_pickle_path): with open(model_pickle_path, 'rb') as f: model, tokenizer = pickle.load(f) else: MODEL_NAME = "sarvamai/sarvam-2b-v0.5" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True) tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained(MODEL_NAME).to(DEVICE) with open(model_pickle_path, 'wb') as f: pickle.dump((model, tokenizer), f) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") text_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=1024, temperature=0.1, top_p=0.95, repetition_penalty=1.15, device=DEVICE ) llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0}) template = generate_prompt( """ {context} Question: {question} """, system_prompt=SYSTEM_PROMPT, ) prompt = PromptTemplate(template=template, input_variables=["context", "question"]) # Initialize QA chains dictionary qa_chains = {} # Process uploaded files if uploaded_files: with st.spinner("Processing PDFs..."): for uploaded_file in uploaded_files: file_path = uploaded_file.name # Use the filename directly qa_chain, doc_language = process_pdf_file(uploaded_file.name, file_path, embeddings, llm, prompt) qa_chains[doc_language] = (qa_chain, uploaded_file.name) st.success("PDFs processed! You can now ask questions.") # Chat interface if st.button("Clear Chat History"): st.session_state.chat_history = [] if "chat_history" not in st.session_state: st.session_state.chat_history = [] for message in st.session_state.chat_history: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input("Ask your question here"): st.session_state.chat_history.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.spinner("Generating response..."): query_language = detect_language(prompt) if query_language in qa_chains: qa_chain, _ = qa_chains[query_language] result = qa_chain({"query": prompt}) cleaned_answer = clean_output(result['result']) with st.chat_message("assistant"): st.markdown(cleaned_answer) st.session_state.chat_history.append({"role": "assistant", "content": cleaned_answer}) else: with st.chat_message("assistant"): st.markdown(f"No document available for the detected language: {query_language}") st.session_state.chat_history.append({"role": "assistant", "content": f"No document available for the detected language: {query_language}"}) if __name__ == "__main__": main()