from functools import wraps import torch from huggingface_hub import HfApi import os import logging import asyncio logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class DeviceManager: _instance = None def __new__(cls): if cls._instance is None: cls._instance = super(DeviceManager, cls).__new__(cls) cls._instance._initialized = False return cls._instance def __init__(self): if self._initialized: return self._initialized = True self._current_device = None self._zero_gpu_available = None def check_zero_gpu_availability(self): try: # 檢查是否在 Spaces 環境中 if 'SPACE_ID' not in os.environ: return False # 檢查是否為 Pro 用戶(ZeroGPU 可用) api = HfApi() space_info = api.get_space_runtime(os.environ['SPACE_ID']) # 檢查是否有 ZeroGPU 資源 if (hasattr(space_info, 'hardware') and space_info.hardware.get('zerogpu', False)): self._zero_gpu_available = True return True except Exception as e: logger.warning(f"Error checking ZeroGPU availability: {e}") self._zero_gpu_available = False return False def get_optimal_device(self): if self._current_device is None: if self.check_zero_gpu_availability(): try: # 特別標記這是 ZeroGPU 環境 os.environ['ZERO_GPU'] = '1' self._current_device = torch.device('cuda') logger.info("Using ZeroGPU") except Exception as e: logger.warning(f"Failed to initialize ZeroGPU: {e}") self._current_device = torch.device('cpu') logger.info("Fallback to CPU due to ZeroGPU initialization failure") else: self._current_device = torch.device('cpu') logger.info("Using CPU (ZeroGPU not available)") return self._current_device def move_to_device(self, tensor_or_model): device = self.get_optimal_device() if hasattr(tensor_or_model, 'to'): try: return tensor_or_model.to(device) except Exception as e: logger.warning(f"Failed to move tensor/model to {device}: {e}") self._current_device = torch.device('cpu') return tensor_or_model.to('cpu') return tensor_or_model def device_handler(func): """Decorator for handling device placement with ZeroGPU support""" @wraps(func) async def wrapper(*args, **kwargs): device_mgr = DeviceManager() def process_arg(arg): if torch.is_tensor(arg) or hasattr(arg, 'to'): return device_mgr.move_to_device(arg) return arg processed_args = [process_arg(arg) for arg in args] processed_kwargs = {k: process_arg(v) for k, v in kwargs.items()} try: # 如果函數是異步的,使用 await if asyncio.iscoroutinefunction(func): result = await func(*processed_args, **processed_kwargs) else: result = func(*processed_args, **processed_kwargs) # 處理輸出 if torch.is_tensor(result): return device_mgr.move_to_device(result) elif isinstance(result, tuple): return tuple(device_mgr.move_to_device(r) if torch.is_tensor(r) else r for r in result) return result except RuntimeError as e: if "out of memory" in str(e) or "CUDA" in str(e): logger.warning("ZeroGPU resources unavailable, falling back to CPU") device_mgr._current_device = torch.device('cpu') return await wrapper(*args, **kwargs) raise e return wrapper