import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification MODEL_NAME = 'bert-base-cased' MODEL_PATH = 'bert_model' ID2CLS = { 0: 'Computer Science', 1: 'Economics', 2: 'Electrical Engineering and Systems Science', 3: 'Mathematics', 4: 'Physics', 5: 'Quantitative Biology', 6: 'Quantitative Finance', 7: 'Statistics' } def classify(text, tokenizer, model): if not text: return [""] tokens = tokenizer([text], truncation=True, padding=True, max_length=256, return_tensors="pt")['input_ids'] probabilities = torch.softmax(model(tokens).logits, dim=1).detach().cpu().numpy()[0] total = 0 ans = [] for p in probabilities.argsort()[::-1]: if probabilities[p] + total < 0.9: total += probabilities[p] ans += [f'{ID2CLS[p]}: {round(probabilities[p] * 100, 2)}%'] return ans tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=8) # model.load_state_dict(torch.load(model_path)) model.eval() st.markdown("## Article classifier") title = st.text_area("title") text = st.text_area("article") for prediction in classify(title + text, tokenizer, model): st.markdown(prediction)