# File under the MIT license, see https://github.com/adefossez/julius/LICENSE for details. # Author: adefossez, 2020 """ Signal processing or PyTorch related utilities. """ import math import typing as tp import torch from torch.nn import functional as F def sinc(x: torch.Tensor): """ Implementation of sinc, i.e. sin(x) / x __Warning__: the input is not multiplied by `pi`! """ return torch.where(x == 0, torch.tensor(1., device=x.device, dtype=x.dtype), torch.sin(x) / x) def pad_to(tensor: torch.Tensor, target_length: int, mode: str = 'constant', value: float = 0): """ Pad the given tensor to the given length, with 0s on the right. """ return F.pad(tensor, (0, target_length - tensor.shape[-1]), mode=mode, value=value) def hz_to_mel(freqs: torch.Tensor): """ Converts a Tensor of frequencies in hertz to the mel scale. Uses the simple formula by O'Shaughnessy (1987). Args: freqs (torch.Tensor): frequencies to convert. """ return 2595 * torch.log10(1 + freqs / 700) def mel_to_hz(mels: torch.Tensor): """ Converts a Tensor of mel scaled frequencies to Hertz. Uses the simple formula by O'Shaughnessy (1987). Args: mels (torch.Tensor): mel frequencies to convert. """ return 700 * (10**(mels / 2595) - 1) def mel_frequencies(n_mels: int, fmin: float, fmax: float): """ Return frequencies that are evenly spaced in mel scale. Args: n_mels (int): number of frequencies to return. fmin (float): start from this frequency (in Hz). fmax (float): finish at this frequency (in Hz). """ low = hz_to_mel(torch.tensor(float(fmin))).item() high = hz_to_mel(torch.tensor(float(fmax))).item() mels = torch.linspace(low, high, n_mels) return mel_to_hz(mels) def volume(x: torch.Tensor, floor=1e-8): """ Return the volume in dBFS. """ return torch.log10(floor + (x**2).mean(-1)) * 10 def pure_tone(freq: float, sr: float = 128, dur: float = 4, device=None): """ Return a pure tone, i.e. cosine. Args: freq (float): frequency (in Hz) sr (float): sample rate (in Hz) dur (float): duration (in seconds) """ time = torch.arange(int(sr * dur), device=device).float() / sr return torch.cos(2 * math.pi * freq * time) def unfold(input, kernel_size: int, stride: int): """1D only unfolding similar to the one from PyTorch. However PyTorch unfold is extremely slow. Given an input tensor of size `[*, T]` this will return a tensor `[*, F, K]` with `K` the kernel size, and `F` the number of frames. The i-th frame is a view onto `i * stride: i * stride + kernel_size`. This will automatically pad the input to cover at least once all entries in `input`. Args: input (Tensor): tensor for which to return the frames. kernel_size (int): size of each frame. stride (int): stride between each frame. Shape: - Inputs: `input` is `[*, T]` - Output: `[*, F, kernel_size]` with `F = 1 + ceil((T - kernel_size) / stride)` ..Warning:: unlike PyTorch unfold, this will pad the input so that any position in `input` is covered by at least one frame. """ shape = list(input.shape) length = shape.pop(-1) n_frames = math.ceil((max(length, kernel_size) - kernel_size) / stride) + 1 tgt_length = (n_frames - 1) * stride + kernel_size padded = F.pad(input, (0, tgt_length - length)).contiguous() strides: tp.List[int] = [] for dim in range(padded.dim()): strides.append(padded.stride(dim)) assert strides.pop(-1) == 1, 'data should be contiguous' strides = strides + [stride, 1] return padded.as_strided(shape + [n_frames, kernel_size], strides)