from langchain_google_genai import ChatGoogleGenerativeAI from langchain_core.messages import HumanMessage, SystemMessage, AnyMessage from typing import TypedDict, Annotated from langgraph.graph.message import add_messages from langgraph.prebuilt import ToolNode from langgraph.graph import START, StateGraph from langgraph.prebuilt import tools_condition from tools import tools model = ChatGoogleGenerativeAI(model="gemini-2.5-flash", temperature=0) model_with_tools = model.bind_tools(tools) system_template = "You are a general AI assistant. I will ask you a question. Your final answer should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string." class AgentState(TypedDict): messages: Annotated[list[AnyMessage], add_messages] def assistant(state: AgentState): return { "messages": [model_with_tools.invoke(state["messages"])], } ## The graph builder = StateGraph(AgentState) # Define nodes: these do the work builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) # Define edges: these determine how the control flow moves builder.add_edge(START, "assistant") builder.add_conditional_edges( "assistant", # If the latest message requires a tool, route to tools # Otherwise, provide a direct response tools_condition, ) builder.add_edge("tools", "assistant") chat = builder.compile() config = {"configurable": {"thread_id": "1"}} def invoke_agent(query: str) -> str: """ Invoke the agent with a given question. """ response = chat.invoke({"messages": [HumanMessage(content=query)]}) return response['messages'][-1].content