Spaces:
Runtime error
Runtime error
# Test libllama tokenizer == AutoTokenizer. | |
# Brute force random words/text generation. | |
# | |
# Sample usage: | |
# | |
# python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe | |
# | |
from __future__ import annotations | |
import time | |
import logging | |
import argparse | |
import subprocess | |
import random | |
import unicodedata | |
from pathlib import Path | |
from typing import Any, Iterator, cast | |
from typing_extensions import Buffer | |
import cffi | |
from transformers import AutoTokenizer, PreTrainedTokenizer | |
logger = logging.getLogger("test-tokenizer-random") | |
class LibLlama: | |
DEFAULT_PATH_LLAMA_H = "./include/llama.h" | |
DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"] | |
DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON | |
def __init__(self, path_llama_h: str | None = None, path_includes: list[str] = [], path_libllama: str | None = None): | |
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H | |
path_includes = path_includes or self.DEFAULT_PATH_INCLUDES | |
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA | |
(self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama) | |
self.lib.llama_backend_init() | |
def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str) -> tuple[cffi.FFI, Any]: | |
cmd = ["gcc", "-O0", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="] | |
cmd += ["-I" + path for path in path_includes] + [path_llama_h] | |
res = subprocess.run(cmd, stdout=subprocess.PIPE) | |
assert (res.returncode == 0) | |
source = res.stdout.decode() | |
ffi = cffi.FFI() | |
if True: # workarounds for pycparser | |
source = "typedef struct { } __builtin_va_list;" + "\n" + source | |
source = source.replace("sizeof (int)", str(ffi.sizeof("int"))) | |
source = source.replace("sizeof (void *)", str(ffi.sizeof("void*"))) | |
source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t"))) | |
source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t"))) | |
ffi.cdef(source, override=True) | |
lib = ffi.dlopen(path_libllama) | |
return (ffi, lib) | |
def model_default_params(self, **kwargs): | |
mparams = self.lib.llama_model_default_params() | |
for k, v in kwargs.items(): | |
setattr(mparams, k, v) | |
return mparams | |
def context_default_params(self, **kwargs): | |
cparams = self.lib.llama_context_default_params() | |
for k, v in kwargs.items(): | |
setattr(cparams, k, v) | |
return cparams | |
class LibLlamaModel: | |
def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}): | |
self.lib: Any = libllama.lib | |
self.ffi = libllama.ffi | |
if isinstance(mparams, dict): | |
mparams = libllama.model_default_params(**mparams) | |
self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams) | |
if not self.model: | |
raise RuntimeError("error: failed to load model '%s'" % path_model) | |
if isinstance(cparams, dict): | |
cparams = libllama.context_default_params(**cparams) | |
self.ctx = self.lib.llama_new_context_with_model(self.model, cparams) | |
if not self.ctx: | |
raise RuntimeError("error: failed to create context for model '%s'" % path_model) | |
n_tokens_max = self.lib.llama_n_ctx(self.ctx) | |
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max) | |
self.text_buff = self.ffi.new("uint8_t[]", 1024) | |
def free(self): | |
if self.ctx: | |
self.lib.llama_free(self.ctx) | |
if self.model: | |
self.lib.llama_free_model(self.model) | |
self.ctx = None | |
self.model = None | |
self.lib = None | |
def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]: | |
encoded_text: bytes = text.encode("utf-8") | |
num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special) | |
while num < 0 and len(self.token_ids) < (16 << 20): | |
self.token_ids = self.ffi.new("llama_token[]", -2 * num) | |
num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special) | |
return list(self.token_ids[0:num]) | |
def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str: | |
if len(self.token_ids) < len(ids): | |
self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids)) | |
for i, id in enumerate(ids): | |
self.token_ids[i] = id | |
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special) | |
while num < 0 and len(self.text_buff) < (16 << 20): | |
self.text_buff = self.ffi.new("uint8_t[]", -2 * num) | |
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special) | |
return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace") # replace errors with '\uFFFD' | |
class Tokenizer: | |
def encode(self, text: str) -> list[int]: | |
raise NotImplementedError | |
def decode(self, ids: list[int]) -> str: | |
raise NotImplementedError | |
class TokenizerGroundtruth (Tokenizer): | |
def __init__(self, dir_tokenizer: str): | |
self.model: PreTrainedTokenizer = AutoTokenizer.from_pretrained(dir_tokenizer) | |
# guess BOS and EOS | |
ids = self.encode("a") | |
assert 1 <= len(ids) <= 3 | |
add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0] | |
add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1] | |
self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token) | |
self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token) | |
# build vocab | |
tokens = list(self.model.get_vocab().values()) | |
self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True) | |
self.vocab = list(sorted(self.vocab)) | |
# tokens and lists | |
self.special_tokens = list(self.model.all_special_tokens) | |
self.added_tokens = self.model.batch_decode(self.model.added_tokens_encoder.values(), skip_special_tokens=False) | |
self.bos_token = self.model.bos_token | |
self.eos_token = self.model.eos_token | |
def encode(self, text: str) -> list[int]: | |
return self.model.encode(text, add_special_tokens=True) | |
def decode(self, ids: list[int]) -> str: | |
return self.model.decode(ids, skip_special_tokens=False) | |
class TokenizerLlamaCpp (Tokenizer): | |
libllama: LibLlama | None = None | |
def __init__(self, vocab_file: str): | |
if not self.libllama: | |
self.libllama = LibLlama() | |
self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096)) | |
def encode(self, text: str) -> list[int]: | |
return self.model.tokenize(text, add_special=True, parse_special=True) | |
def decode(self, ids: list[int]) -> str: | |
return self.model.detokenize(ids, remove_special=False, unparse_special=True) | |
def generator_custom_text() -> Iterator[str]: | |
"""General tests""" | |
yield from [ | |
"", | |
" ", | |
" ", | |
" ", | |
"\t", | |
"\n", | |
"\n\n", | |
"\n\n\n", | |
"\t\n", | |
"Hello world", | |
" Hello world", | |
"Hello World", | |
" Hello World", | |
" Hello World!", | |
"Hello, world!", | |
" Hello, world!", | |
" this is 🦙.cpp", | |
"w048 7tuijk dsdfhu", | |
"нещо на Български", | |
"កាន់តែពិសេសអាចខលចេញ", | |
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", | |
"Hello", | |
" Hello", | |
" Hello", | |
" Hello", | |
" Hello", | |
" Hello\n Hello", | |
" (", | |
"\n =", | |
"' era", | |
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天~", | |
"3", | |
"33", | |
"333", | |
"3333", | |
"33333", | |
"333333", | |
"3333333", | |
"33333333", | |
"333333333", | |
] | |
def generator_custom_text_edge_cases() -> Iterator[str]: | |
"""Edge cases found while debugging""" | |
yield from [ | |
'\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F} | |
'¼-a', # unicode_ranges_digit, 0x00BC | |
'½-a', # unicode_ranges_digit, 0x00BD | |
'¾-a', # unicode_ranges_digit, 0x00BE | |
'a 〇b', # unicode_ranges_digit, 0x3007 | |
'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms | |
'\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM) | |
'Cửa Việt', # llama-3, ignore_merges = true | |
'<s>a', # Phi-3 fail | |
'<unk><|endoftext|><s>', # Phi-3 fail | |
'a\na', # bert fail | |
'"`', # falcon | |
' \u2e4e', # falcon | |
'\n\x0b ', # falcon | |
'a\xa0\xa0\x00b', # jina-v2-es | |
'one <mask>', # jina-v2-es <mask> lstrip=true | |
'a </s> b', # rstrip phi-3 | |
'a <mask> b', # lstrip jina-v2 | |
'\xa0aC', # deepseek | |
'\u2029 \uA3E4', # deepseek-llm | |
"a ?", | |
'å', # mpt | |
'\U000ac517', # utf-8 encode error, falcon | |
'\U000522f4', # utf-8 encode error, starcoder | |
"<s><s><unk><s>a<s>b<s>c<unk>d<unk></s>", | |
"<s> <s> <unk><s>a<s>b<s>c<unk>d<unk></s>", | |
] | |
def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]: | |
"""Brute force check all vocab words""" | |
yield from tokenizer.vocab | |
def generator_ascii_lr_strip() -> Iterator[str]: | |
WHITESPACES = ["", " ", " "] | |
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""] | |
for char1 in CHARACTERS: | |
for char2 in CHARACTERS: | |
for lstrip in WHITESPACES: | |
for rstrip in WHITESPACES: | |
yield lstrip + char1 + char2 + rstrip | |
yield lstrip + char1 + rstrip + char2 | |
yield char1 + lstrip + char2 + rstrip | |
def generator_apostrophe() -> Iterator[str]: | |
WHITESPACES = ["", " ", " "] | |
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""] | |
for char1 in CHARACTERS: | |
for char2 in CHARACTERS: | |
for lstrip in WHITESPACES: | |
for rstrip in WHITESPACES: | |
yield char1 + lstrip + "'" + rstrip + char2 | |
yield char1 + char2 + lstrip + "'" + rstrip + "z" | |
yield "a" + lstrip + "'" + rstrip + char1 + char2 | |
def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]: | |
WHITESPACES = ["", " ", " ", "\n", "\r\n", "\n\n", "\t", "\t\t"] | |
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens))) | |
for token in all_tokens: | |
for lstrip in WHITESPACES: | |
for rstrip in WHITESPACES: | |
yield lstrip + token + rstrip | |
yield "a" + lstrip + token + rstrip | |
yield lstrip + token + rstrip + "z" | |
yield "a" + lstrip + token + rstrip + "z" | |
def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]: | |
separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"] | |
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations))) | |
rand = random.Random() | |
for m in range(iterations): | |
rand.seed(m) | |
words = rand.choices(all_tokens, k=500) | |
if words and words[0] == tokenizer.bos_token: # skip spam warning of double BOS | |
while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS | |
words.pop(0) | |
if tokenizer.add_bos_token: # drop all starting BOS | |
words.pop(0) | |
if words and words[-1] == tokenizer.eos_token: # skip spam warning of double EOS | |
while len(words) > 1 and words[-2] == tokenizer.eos_token: # leave one trailing EOS | |
words.pop(-1) | |
if tokenizer.add_bos_token: # drop all trailing EOS | |
words.pop(-1) | |
yield "".join(words) | |
def generator_random_chars(iterations=100) -> Iterator[str]: | |
"""Brute force random text with simple characters""" | |
NUM_WORDS = 400 | |
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5) | |
CHARS = list(sorted(set(""" | |
ABCDEFGHIJKLMNOPQRSTUVWXYZ | |
abcdefghijklmnopqrstuvwxyz | |
ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ | |
áéíóúàèìòùâêîôûäëïöü | |
.-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_ | |
"""))) | |
rand = random.Random() | |
for m in range(iterations): | |
rand.seed(m) | |
text = [] | |
for _ in range(NUM_WORDS): | |
k = rand.randint(1, 7) | |
word = rand.choices(CHARS, k=k) | |
word.append(rand.choice(WHITESPACES)) | |
text.append("".join(word)) | |
yield "".join(text) | |
def generator_unicodes() -> Iterator[str]: | |
"""Iterate unicode characters""" | |
MAX_CODEPOINTS = 0x30000 # 0x110000 | |
def _valid(cpt): | |
if cpt >= 0x30000: # unassigned and supplementary | |
return False | |
# if cpt == 0x2029: # deepseek-llm | |
# return False | |
if unicodedata.category(chr(cpt)) in ("Cn", "Cs", "Co"): # undefined, surrogates, private | |
return False | |
return True | |
characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)] | |
yield from characters | |
def generator_random_unicodes(iterations=100) -> Iterator[str]: | |
"""Brute force random text with unicode characters""" | |
NUM_WORDS = 200 | |
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5) | |
characters = list(generator_unicodes()) | |
rand = random.Random() | |
for m in range(iterations): | |
rand.seed(m) | |
text = [] | |
for _ in range(NUM_WORDS): | |
k = rand.randint(1, 7) | |
word = rand.choices(characters, k=k) | |
word.append(rand.choice(WHITESPACES)) | |
text.append("".join(word)) | |
yield "".join(text) | |
def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]: | |
"""Brute force random text with vocab characters""" | |
vocab_chars = set() | |
for word in tokenizer.vocab: | |
vocab_chars.update(word) | |
vocab_chars = list(sorted(vocab_chars)) | |
rand = random.Random() | |
for m in range(iterations): | |
rand.seed(m) | |
text = rand.choices(vocab_chars, k=1024) | |
yield "".join(text) | |
def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]: | |
"""Brute force random text from vocab words""" | |
vocab = [w.strip() for w in tokenizer.vocab] | |
yield from vocab | |
rand = random.Random() | |
for m in range(iterations): | |
rand.seed(m) | |
text = [] | |
num_words = rand.randint(300, 400) | |
for i in range(num_words): | |
k = rand.randint(1, 3) | |
words = rand.choices(vocab, k=k) | |
sep = rand.choice(" \n\r\t") | |
text.append("".join(words) + sep) | |
yield "".join(text) | |
def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]): | |
def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str): | |
for i, (a, b) in enumerate(zip(ids1, ids2)): | |
if a != b: | |
return i | |
if len(ids1) == len(ids2): | |
return -1 | |
return min(len(ids1), len(ids2)) | |
def check_detokenizer(text: str, text1: str, text2: str) -> bool: | |
if text1 == text2: # equal to TokenizerGroundtruth? | |
return True | |
# equal to source text? | |
if tokenizer1.add_bos_token: # remove BOS | |
if text2.startswith(tokenizer1.bos_token): | |
text2 = text2[len(tokenizer1.bos_token):] | |
if tokenizer1.add_eos_token: # remove EOS | |
if text2.endswith(tokenizer1.eos_token): | |
text2 = text2[:-len(tokenizer1.eos_token)] | |
return text == text2 | |
t_encode1 = 0 | |
t_encode2 = 0 | |
t_decode1 = 0 | |
t_decode2 = 0 | |
t_start = time.perf_counter() | |
encode_errors = 0 | |
decode_errors = 0 | |
MAX_ERRORS = 10 | |
logger.info("%s: %s" % (generator.__qualname__, "ini")) | |
for text in generator: | |
# print(repr(text), text.encode()) | |
# print(repr(text), hex(ord(text[0])), text.encode()) | |
t0 = time.perf_counter() | |
ids1 = tokenizer1.encode(text) | |
t1 = time.perf_counter() | |
ids2 = tokenizer2.encode(text) | |
t2 = time.perf_counter() | |
text1 = tokenizer1.decode(ids1) | |
t3 = time.perf_counter() | |
text2 = tokenizer2.decode(ids1) | |
t4 = time.perf_counter() | |
t_encode1 += t1 - t0 | |
t_encode2 += t2 - t1 | |
t_decode1 += t3 - t2 | |
t_decode2 += t4 - t3 | |
if encode_errors < MAX_ERRORS and ids1 != ids2: | |
i = find_first_mismatch(ids1, ids2) | |
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1] | |
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1] | |
logger.error(" Expected: " + str(ids1)) | |
logger.error(" Result: " + str(ids2)) | |
encode_errors += 1 | |
logger.error(f" {encode_errors=}") | |
if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2): | |
i = find_first_mismatch(text1, text2) | |
text1 = list(text1[max(0, i - 2) : i + 5 + 1]) | |
text2 = list(text2[max(0, i - 2) : i + 5 + 1]) | |
logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1)) | |
logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2)) | |
decode_errors += 1 | |
logger.error(f" {decode_errors=}") | |
if encode_errors >= MAX_ERRORS and decode_errors >= MAX_ERRORS: | |
logger.error(f" EXIT: {encode_errors=} {decode_errors=}") | |
# raise Exception() | |
break | |
t_total = time.perf_counter() - t_start | |
logger.info(f"{generator.__qualname__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}") | |
def main(argv: list[str] | None = None): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file") | |
parser.add_argument("dir_tokenizer", type=str, help="directory containing 'tokenizer.model' file") | |
parser.add_argument("--verbose", action="store_true", help="increase output verbosity") | |
args = parser.parse_args(argv) | |
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO) | |
logger.info(f"VOCABFILE: '{args.vocab_file}'") | |
tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer) | |
tokenizer2 = TokenizerLlamaCpp(args.vocab_file) | |
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text()) | |
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases()) | |
compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip()) | |
compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe()) | |
compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes()) | |
compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1)) | |
compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1)) | |
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000)) | |
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000)) | |
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000)) | |
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_chars(tokenizer1, 10_000)) | |
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_words(tokenizer1, 5_000)) | |
tokenizer2.model.free() | |
if __name__ == "__main__": | |
# main() | |
if True: | |
logging.basicConfig( | |
level = logging.DEBUG, | |
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s", | |
datefmt = "%Y-%m-%d %H:%M:%S", | |
filename = logger.name + ".log", | |
filemode = "a" | |
) | |
logging.basicConfig( | |
level = logging.DEBUG, | |
format = "%(levelname)s %(message)s", | |
) | |
path_tokenizers = Path("./models/tokenizers/") | |
path_vocab_format = "./models/ggml-vocab-%s.gguf" | |
tokenizers = [ | |
"llama-spm", # SPM | |
"phi-3", # SPM | |
"gemma", # SPM | |
"gemma-2", # SPM | |
"baichuan", # SPM | |
"bert-bge", # WPM | |
"jina-v2-en", # WPM | |
"llama-bpe", # BPE | |
"phi-2", # BPE | |
"deepseek-llm", # BPE | |
"deepseek-coder", # BPE | |
"falcon", # BPE | |
"mpt", # BPE | |
"starcoder", # BPE | |
"gpt-2", # BPE | |
"stablelm2", # BPE | |
"refact", # BPE | |
"qwen2", # BPE | |
"olmo", # BPE | |
"jina-v2-es", # BPE | |
"jina-v2-de", # BPE | |
"smaug-bpe", # BPE | |
"poro-chat", # BPE | |
"jina-v2-code", # BPE | |
"viking", # BPE | |
"jais", # BPE | |
] | |
logger.info("=" * 50) | |
for tokenizer in tokenizers: | |
logger.info("-" * 50) | |
logger.info(f"TOKENIZER: '{tokenizer}'") | |
vocab_file = Path(path_vocab_format % tokenizer) | |
dir_tokenizer = path_tokenizers / tokenizer | |
main([str(vocab_file), str(dir_tokenizer), "--verbose"]) | |