Spaces:
Runtime error
Runtime error
// Change JSON_ASSERT from assert() to GGML_ASSERT: | |
using json = nlohmann::ordered_json; | |
// | |
// CPU utils | |
// | |
int32_t cpu_get_num_physical_cores() { | |
// enumerate the set of thread siblings, num entries is num cores | |
std::unordered_set<std::string> siblings; | |
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) { | |
std::ifstream thread_siblings("/sys/devices/system/cpu/cpu" | |
+ std::to_string(cpu) + "/topology/thread_siblings"); | |
if (!thread_siblings.is_open()) { | |
break; // no more cpus | |
} | |
std::string line; | |
if (std::getline(thread_siblings, line)) { | |
siblings.insert(line); | |
} | |
} | |
if (!siblings.empty()) { | |
return static_cast<int32_t>(siblings.size()); | |
} | |
int32_t num_physical_cores; | |
size_t len = sizeof(num_physical_cores); | |
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0); | |
if (result == 0) { | |
return num_physical_cores; | |
} | |
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0); | |
if (result == 0) { | |
return num_physical_cores; | |
} | |
// TODO: windows + arm64 + mingw64 | |
unsigned int n_threads_win = std::thread::hardware_concurrency(); | |
unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4; | |
DWORD buffer_size = 0; | |
if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) { | |
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) { | |
return default_threads; | |
} | |
} | |
std::vector<char> buffer(buffer_size); | |
if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()), &buffer_size)) { | |
return default_threads; | |
} | |
int32_t num_physical_cores = 0; | |
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()); | |
while (buffer_size > 0) { | |
if (info->Relationship == RelationProcessorCore) { | |
num_physical_cores += info->Processor.GroupCount; | |
} | |
buffer_size -= info->Size; | |
info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(reinterpret_cast<char*>(info) + info->Size); | |
} | |
return num_physical_cores > 0 ? num_physical_cores : default_threads; | |
unsigned int n_threads = std::thread::hardware_concurrency(); | |
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; | |
} | |
static void cpuid(unsigned leaf, unsigned subleaf, | |
unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) { | |
__asm__("movq\t%%rbx,%%rsi\n\t" | |
"cpuid\n\t" | |
"xchgq\t%%rbx,%%rsi" | |
: "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx) | |
: "0"(leaf), "2"(subleaf)); | |
} | |
static int pin_cpu(int cpu) { | |
cpu_set_t mask; | |
CPU_ZERO(&mask); | |
CPU_SET(cpu, &mask); | |
return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask); | |
} | |
static bool is_hybrid_cpu(void) { | |
unsigned eax, ebx, ecx, edx; | |
cpuid(7, 0, &eax, &ebx, &ecx, &edx); | |
return !!(edx & (1u << 15)); | |
} | |
static bool is_running_on_efficiency_core(void) { | |
unsigned eax, ebx, ecx, edx; | |
cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx); | |
int intel_atom = 0x20; | |
int core_type = (eax & 0xff000000u) >> 24; | |
return core_type == intel_atom; | |
} | |
static int cpu_count_math_cpus(int n_cpu) { | |
int result = 0; | |
for (int cpu = 0; cpu < n_cpu; ++cpu) { | |
if (pin_cpu(cpu)) { | |
return -1; | |
} | |
if (is_running_on_efficiency_core()) { | |
continue; // efficiency cores harm lockstep threading | |
} | |
++cpu; // hyperthreading isn't useful for linear algebra | |
++result; | |
} | |
return result; | |
} | |
/** | |
* Returns number of CPUs on system that are useful for math. | |
*/ | |
int32_t cpu_get_num_math() { | |
int n_cpu = sysconf(_SC_NPROCESSORS_ONLN); | |
if (n_cpu < 1) { | |
return cpu_get_num_physical_cores(); | |
} | |
if (is_hybrid_cpu()) { | |
cpu_set_t affinity; | |
if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) { | |
int result = cpu_count_math_cpus(n_cpu); | |
pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity); | |
if (result > 0) { | |
return result; | |
} | |
} | |
} | |
return cpu_get_num_physical_cores(); | |
} | |
// Helper for setting process priority | |
bool set_process_priority(enum ggml_sched_priority prio) { | |
if (prio == GGML_SCHED_PRIO_NORMAL) { | |
return true; | |
} | |
DWORD p = NORMAL_PRIORITY_CLASS; | |
switch (prio) { | |
case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break; | |
case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break; | |
case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break; | |
case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS; break; | |
} | |
if (!SetPriorityClass(GetCurrentProcess(), p)) { | |
LOG_WRN("failed to set process priority class %d : (%d)\n", prio, (int) GetLastError()); | |
return false; | |
} | |
return true; | |
} | |
bool set_process_priority(enum ggml_sched_priority prio) { | |
if (prio == GGML_SCHED_PRIO_NORMAL) { | |
return true; | |
} | |
int p = 0; | |
switch (prio) { | |
case GGML_SCHED_PRIO_NORMAL: p = 0; break; | |
case GGML_SCHED_PRIO_MEDIUM: p = -5; break; | |
case GGML_SCHED_PRIO_HIGH: p = -10; break; | |
case GGML_SCHED_PRIO_REALTIME: p = -20; break; | |
} | |
if (!setpriority(PRIO_PROCESS, 0, p)) { | |
LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno); | |
return false; | |
} | |
return true; | |
} | |
// | |
// CLI argument parsing | |
// | |
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) { | |
int32_t n_set = 0; | |
if (cpuparams.n_threads < 0) { | |
// Assuming everything about cpuparams is invalid | |
if (role_model != nullptr) { | |
cpuparams = *role_model; | |
} else { | |
cpuparams.n_threads = cpu_get_num_math(); | |
} | |
} | |
for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) { | |
if (cpuparams.cpumask[i]) { | |
n_set++; | |
} | |
} | |
if (n_set && n_set < cpuparams.n_threads) { | |
// Not enough set bits, may experience performance issues. | |
LOG_WRN("Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads); | |
} | |
} | |
bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) { | |
size_t dash_loc = range.find('-'); | |
if (dash_loc == std::string::npos) { | |
LOG_ERR("Format of CPU range is invalid! Expected [<start>]-[<end>].\n"); | |
return false; | |
} | |
size_t start_i; | |
size_t end_i; | |
if (dash_loc == 0) { | |
start_i = 0; | |
} else { | |
start_i = std::stoull(range.substr(0, dash_loc)); | |
if (start_i >= GGML_MAX_N_THREADS) { | |
LOG_ERR("Start index out of bounds!\n"); | |
return false; | |
} | |
} | |
if (dash_loc == range.length() - 1) { | |
end_i = GGML_MAX_N_THREADS - 1; | |
} else { | |
end_i = std::stoull(range.substr(dash_loc + 1)); | |
if (end_i >= GGML_MAX_N_THREADS) { | |
LOG_ERR("End index out of bounds!\n"); | |
return false; | |
} | |
} | |
for (size_t i = start_i; i <= end_i; i++) { | |
boolmask[i] = true; | |
} | |
return true; | |
} | |
bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) { | |
// Discard potential 0x prefix | |
size_t start_i = 0; | |
if (mask.length() >= 2 && mask.substr(0, 2) == "0x") { | |
start_i = 2; | |
} | |
size_t num_digits = mask.length() - start_i; | |
if (num_digits > 128) num_digits = 128; | |
size_t end_i = num_digits + start_i; | |
for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) { | |
char c = mask.at(i); | |
int8_t id = c; | |
if ((c >= '0' && c <= '9')) { | |
id -= '0'; | |
} else if (c >= 'a' && c <= 'f') { | |
id -= 'a' - 10; | |
} else if (c >= 'A' && c <= 'F') { | |
id -= 'A' - 10; | |
} else { | |
LOG_ERR("Invalid hex character '%c' at position %d\n", c, int32_t(i)); | |
return false; | |
} | |
boolmask[ n ] = boolmask[ n ] || ((id & 8) != 0); | |
boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0); | |
boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0); | |
boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0); | |
} | |
return true; | |
} | |
void common_init() { | |
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) { | |
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) { | |
common_log_add(common_log_main(), level, "%s", text); | |
} | |
}, NULL); | |
const char * build_type = ""; | |
const char * build_type = " (debug)"; | |
LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type); | |
} | |
std::string common_params_get_system_info(const common_params & params) { | |
std::ostringstream os; | |
os << "system_info: n_threads = " << params.cpuparams.n_threads; | |
if (params.cpuparams_batch.n_threads != -1) { | |
os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")"; | |
} | |
// TODO: windows + arm64 + mingw64 | |
DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS); | |
os << " / " << logicalProcessorCount << " | " << llama_print_system_info(); | |
os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info(); | |
return os.str(); | |
} | |
// | |
// String utils | |
// | |
std::string string_format(const char * fmt, ...) { | |
va_list ap; | |
va_list ap2; | |
va_start(ap, fmt); | |
va_copy(ap2, ap); | |
int size = vsnprintf(NULL, 0, fmt, ap); | |
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT | |
std::vector<char> buf(size + 1); | |
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); | |
GGML_ASSERT(size2 == size); | |
va_end(ap2); | |
va_end(ap); | |
return std::string(buf.data(), size); | |
} | |
std::string string_strip(const std::string & str) { | |
size_t start = 0; | |
size_t end = str.size(); | |
while (start < end && std::isspace(str[start])) { | |
start++; | |
} | |
while (end > start && std::isspace(str[end - 1])) { | |
end--; | |
} | |
return str.substr(start, end - start); | |
} | |
std::string string_get_sortable_timestamp() { | |
using clock = std::chrono::system_clock; | |
const clock::time_point current_time = clock::now(); | |
const time_t as_time_t = clock::to_time_t(current_time); | |
char timestamp_no_ns[100]; | |
std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t)); | |
const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>( | |
current_time.time_since_epoch() % 1000000000).count(); | |
char timestamp_ns[11]; | |
snprintf(timestamp_ns, 11, "%09" PRId64, ns); | |
return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns); | |
} | |
void string_replace_all(std::string & s, const std::string & search, const std::string & replace) { | |
if (search.empty()) { | |
return; | |
} | |
std::string builder; | |
builder.reserve(s.length()); | |
size_t pos = 0; | |
size_t last_pos = 0; | |
while ((pos = s.find(search, last_pos)) != std::string::npos) { | |
builder.append(s, last_pos, pos - last_pos); | |
builder.append(replace); | |
last_pos = pos + search.length(); | |
} | |
builder.append(s, last_pos, std::string::npos); | |
s = std::move(builder); | |
} | |
std::string string_from(bool value) { | |
return value ? "true" : "false"; | |
} | |
std::string string_from(const std::vector<int> & values) { | |
std::stringstream buf; | |
buf << "[ "; | |
bool first = true; | |
for (auto e : values) { | |
if (first) { | |
first = false; | |
} else { | |
buf << ", "; | |
} | |
buf << std::to_string(e); | |
} | |
buf << " ]"; | |
return buf.str(); | |
} | |
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens) { | |
std::stringstream buf; | |
buf << "[ "; | |
bool first = true; | |
for (const auto & token : tokens) { | |
if (!first) { | |
buf << ", "; | |
} else { | |
first = false; | |
} | |
auto detokenized = common_token_to_piece(ctx, token); | |
detokenized.erase( | |
std::remove_if( | |
detokenized.begin(), | |
detokenized.end(), | |
[](const unsigned char c) { return !std::isprint(c); }), | |
detokenized.end()); | |
buf << "'" << detokenized << "'" | |
<< ":" << std::to_string(token); | |
} | |
buf << " ]"; | |
return buf.str(); | |
} | |
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch) { | |
std::stringstream buf; | |
buf << "[ "; | |
bool first = true; | |
for (int i = 0; i < batch.n_tokens; ++i) { | |
if (!first) { | |
buf << ", "; | |
} else { | |
first = false; | |
} | |
auto detokenized = common_token_to_piece(ctx, batch.token[i]); | |
detokenized.erase( | |
std::remove_if( | |
detokenized.begin(), | |
detokenized.end(), | |
[](const unsigned char c) { return !std::isprint(c); }), | |
detokenized.end()); | |
buf << "\n" << std::to_string(i) | |
<< ":token '" << detokenized << "'" | |
<< ":pos " << std::to_string(batch.pos[i]) | |
<< ":n_seq_id " << std::to_string(batch.n_seq_id[i]) | |
<< ":seq_id " << std::to_string(batch.seq_id[i][0]) | |
<< ":logits " << std::to_string(batch.logits[i]); | |
} | |
buf << " ]"; | |
return buf.str(); | |
} | |
void string_process_escapes(std::string & input) { | |
std::size_t input_len = input.length(); | |
std::size_t output_idx = 0; | |
for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) { | |
if (input[input_idx] == '\\' && input_idx + 1 < input_len) { | |
switch (input[++input_idx]) { | |
case 'n': input[output_idx++] = '\n'; break; | |
case 'r': input[output_idx++] = '\r'; break; | |
case 't': input[output_idx++] = '\t'; break; | |
case '\'': input[output_idx++] = '\''; break; | |
case '\"': input[output_idx++] = '\"'; break; | |
case '\\': input[output_idx++] = '\\'; break; | |
case 'x': | |
// Handle \x12, etc | |
if (input_idx + 2 < input_len) { | |
const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 }; | |
char *err_p = nullptr; | |
const long val = std::strtol(x, &err_p, 16); | |
if (err_p == x + 2) { | |
input_idx += 2; | |
input[output_idx++] = char(val); | |
break; | |
} | |
} | |
// fall through | |
default: input[output_idx++] = '\\'; | |
input[output_idx++] = input[input_idx]; break; | |
} | |
} else { | |
input[output_idx++] = input[input_idx]; | |
} | |
} | |
input.resize(output_idx); | |
} | |
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) { | |
const char * sep = strchr(data, '='); | |
if (sep == nullptr || sep - data >= 128) { | |
LOG_ERR("%s: malformed KV override '%s'\n", __func__, data); | |
return false; | |
} | |
llama_model_kv_override kvo; | |
std::strncpy(kvo.key, data, sep - data); | |
kvo.key[sep - data] = 0; | |
sep++; | |
if (strncmp(sep, "int:", 4) == 0) { | |
sep += 4; | |
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; | |
kvo.val_i64 = std::atol(sep); | |
} else if (strncmp(sep, "float:", 6) == 0) { | |
sep += 6; | |
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; | |
kvo.val_f64 = std::atof(sep); | |
} else if (strncmp(sep, "bool:", 5) == 0) { | |
sep += 5; | |
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; | |
if (std::strcmp(sep, "true") == 0) { | |
kvo.val_bool = true; | |
} else if (std::strcmp(sep, "false") == 0) { | |
kvo.val_bool = false; | |
} else { | |
LOG_ERR("%s: invalid boolean value for KV override '%s'\n", __func__, data); | |
return false; | |
} | |
} else if (strncmp(sep, "str:", 4) == 0) { | |
sep += 4; | |
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR; | |
if (strlen(sep) > 127) { | |
LOG_ERR("%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data); | |
return false; | |
} | |
strncpy(kvo.val_str, sep, 127); | |
kvo.val_str[127] = '\0'; | |
} else { | |
LOG_ERR("%s: invalid type for KV override '%s'\n", __func__, data); | |
return false; | |
} | |
overrides.emplace_back(std::move(kvo)); | |
return true; | |
} | |
// | |
// Filesystem utils | |
// | |
// Validate if a filename is safe to use | |
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function | |
bool fs_validate_filename(const std::string & filename) { | |
if (!filename.length()) { | |
// Empty filename invalid | |
return false; | |
} | |
if (filename.length() > 255) { | |
// Limit at common largest possible filename on Linux filesystems | |
// to avoid unnecessary further validation | |
// (On systems with smaller limits it will be caught by the OS) | |
return false; | |
} | |
std::u32string filename_utf32; | |
try { | |
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter; | |
filename_utf32 = converter.from_bytes(filename); | |
// If the reverse conversion mismatches, it means overlong UTF-8 sequences were used, | |
// or invalid encodings were encountered. Reject such attempts | |
std::string filename_reencoded = converter.to_bytes(filename_utf32); | |
if (filename_reencoded != filename) { | |
return false; | |
} | |
} catch (const std::exception &) { | |
return false; | |
} | |
// Check for forbidden codepoints: | |
// - Control characters | |
// - Unicode equivalents of illegal characters | |
// - UTF-16 surrogate pairs | |
// - UTF-8 replacement character | |
// - Byte order mark (BOM) | |
// - Illegal characters: / \ : * ? " < > | | |
for (char32_t c : filename_utf32) { | |
if (c <= 0x1F // Control characters (C0) | |
|| c == 0x7F // Control characters (DEL) | |
|| (c >= 0x80 && c <= 0x9F) // Control characters (C1) | |
|| c == 0xFF0E // Fullwidth Full Stop (period equivalent) | |
|| c == 0x2215 // Division Slash (forward slash equivalent) | |
|| c == 0x2216 // Set Minus (backslash equivalent) | |
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs | |
|| c == 0xFFFD // Replacement Character (UTF-8) | |
|| c == 0xFEFF // Byte Order Mark (BOM) | |
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters | |
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') { | |
return false; | |
} | |
} | |
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename | |
// Unicode and other whitespace is not affected, only 0x20 space | |
if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') { | |
return false; | |
} | |
// Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead) | |
if (filename.find("..") != std::string::npos) { | |
return false; | |
} | |
// Reject "." | |
if (filename == ".") { | |
return false; | |
} | |
return true; | |
} | |
// returns true if successful, false otherwise | |
bool fs_create_directory_with_parents(const std::string & path) { | |
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter; | |
std::wstring wpath = converter.from_bytes(path); | |
// if the path already exists, check whether it's a directory | |
const DWORD attributes = GetFileAttributesW(wpath.c_str()); | |
if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { | |
return true; | |
} | |
size_t pos_slash = 0; | |
// process path from front to back, procedurally creating directories | |
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) { | |
const std::wstring subpath = wpath.substr(0, pos_slash); | |
const wchar_t * test = subpath.c_str(); | |
const bool success = CreateDirectoryW(test, NULL); | |
if (!success) { | |
const DWORD error = GetLastError(); | |
// if the path already exists, ensure that it's a directory | |
if (error == ERROR_ALREADY_EXISTS) { | |
const DWORD attributes = GetFileAttributesW(subpath.c_str()); | |
if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) { | |
return false; | |
} | |
} else { | |
return false; | |
} | |
} | |
pos_slash += 1; | |
} | |
return true; | |
// if the path already exists, check whether it's a directory | |
struct stat info; | |
if (stat(path.c_str(), &info) == 0) { | |
return S_ISDIR(info.st_mode); | |
} | |
size_t pos_slash = 1; // skip leading slashes for directory creation | |
// process path from front to back, procedurally creating directories | |
while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) { | |
const std::string subpath = path.substr(0, pos_slash); | |
struct stat info; | |
// if the path already exists, ensure that it's a directory | |
if (stat(subpath.c_str(), &info) == 0) { | |
if (!S_ISDIR(info.st_mode)) { | |
return false; | |
} | |
} else { | |
// create parent directories | |
const int ret = mkdir(subpath.c_str(), 0755); | |
if (ret != 0) { | |
return false; | |
} | |
} | |
pos_slash += 1; | |
} | |
return true; | |
} | |
std::string fs_get_cache_directory() { | |
std::string cache_directory = ""; | |
auto ensure_trailing_slash = [](std::string p) { | |
// Make sure to add trailing slash | |
if (p.back() != DIRECTORY_SEPARATOR) { | |
p += DIRECTORY_SEPARATOR; | |
} | |
return p; | |
}; | |
if (getenv("LLAMA_CACHE")) { | |
cache_directory = std::getenv("LLAMA_CACHE"); | |
} else { | |
if (std::getenv("XDG_CACHE_HOME")) { | |
cache_directory = std::getenv("XDG_CACHE_HOME"); | |
} else { | |
cache_directory = std::getenv("HOME") + std::string("/.cache/"); | |
} | |
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/"); | |
cache_directory = std::getenv("LOCALAPPDATA"); | |
cache_directory = ensure_trailing_slash(cache_directory); | |
cache_directory += "llama.cpp"; | |
} | |
return ensure_trailing_slash(cache_directory); | |
} | |
std::string fs_get_cache_file(const std::string & filename) { | |
GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos); | |
std::string cache_directory = fs_get_cache_directory(); | |
const bool success = fs_create_directory_with_parents(cache_directory); | |
if (!success) { | |
throw std::runtime_error("failed to create cache directory: " + cache_directory); | |
} | |
return cache_directory + filename; | |
} | |
// | |
// Model utils | |
// | |
struct common_init_result common_init_from_params(common_params & params) { | |
common_init_result iparams; | |
auto mparams = common_model_params_to_llama(params); | |
llama_model * model = nullptr; | |
if (!params.hf_repo.empty() && !params.hf_file.empty()) { | |
model = common_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams); | |
} else if (!params.model_url.empty()) { | |
model = common_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams); | |
} else { | |
model = llama_load_model_from_file(params.model.c_str(), mparams); | |
} | |
if (model == NULL) { | |
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str()); | |
return iparams; | |
} | |
if (params.reranking) { | |
bool ok = true; | |
if (llama_token_bos(model) == LLAMA_TOKEN_NULL) { | |
LOG_WRN("%s: warning: model does not have a BOS token, reranking will not work\n", __func__); | |
ok = false; | |
} | |
if (llama_token_eos(model) == LLAMA_TOKEN_NULL) { | |
LOG_WRN("%s: warning: model does not have an EOS token, reranking will not work\n", __func__); | |
ok = false; | |
} | |
if (llama_token_sep(model) == LLAMA_TOKEN_NULL) { | |
LOG_WRN("%s: warning: model does not have a SEP token, reranking will not work\n", __func__); | |
ok = false; | |
} | |
if (!ok) { | |
llama_free_model(model); | |
return iparams; | |
} | |
} | |
auto cparams = common_context_params_to_llama(params); | |
llama_context * lctx = llama_new_context_with_model(model, cparams); | |
if (lctx == NULL) { | |
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str()); | |
llama_free_model(model); | |
return iparams; | |
} | |
if (!params.control_vectors.empty()) { | |
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1; | |
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model); | |
const auto cvec = common_control_vector_load(params.control_vectors); | |
if (cvec.n_embd == -1) { | |
llama_free(lctx); | |
llama_free_model(model); | |
return iparams; | |
} | |
int err = llama_control_vector_apply(lctx, | |
cvec.data.data(), | |
cvec.data.size(), | |
cvec.n_embd, | |
params.control_vector_layer_start, | |
params.control_vector_layer_end); | |
if (err) { | |
llama_free(lctx); | |
llama_free_model(model); | |
return iparams; | |
} | |
} | |
// load and optionally apply lora adapters | |
for (auto & la : params.lora_adapters) { | |
common_lora_adapter_container loaded_la; | |
loaded_la.path = la.path; | |
loaded_la.scale = la.scale; | |
loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str()); | |
if (loaded_la.adapter == nullptr) { | |
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str()); | |
llama_free(lctx); | |
llama_free_model(model); | |
return iparams; | |
} | |
iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters | |
} | |
if (!params.lora_init_without_apply) { | |
common_lora_adapters_apply(lctx, iparams.lora_adapters); | |
} | |
if (params.sparams.ignore_eos && llama_token_eos(model) == LLAMA_TOKEN_NULL) { | |
LOG_WRN("%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__); | |
params.sparams.ignore_eos = false; | |
} | |
if (params.warmup) { | |
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__); | |
std::vector<llama_token> tmp; | |
llama_token bos = llama_token_bos(model); | |
llama_token eos = llama_token_eos(model); | |
// some models (e.g. T5) don't have a BOS token | |
if (bos != LLAMA_TOKEN_NULL) { | |
tmp.push_back(bos); | |
} | |
if (eos != LLAMA_TOKEN_NULL) { | |
tmp.push_back(eos); | |
} | |
if (tmp.empty()) { | |
tmp.push_back(0); | |
} | |
if (llama_model_has_encoder(model)) { | |
llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size())); | |
llama_token decoder_start_token_id = llama_model_decoder_start_token(model); | |
if (decoder_start_token_id == -1) { | |
decoder_start_token_id = bos; | |
} | |
tmp.clear(); | |
tmp.push_back(decoder_start_token_id); | |
} | |
if (llama_model_has_decoder(model)) { | |
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch))); | |
} | |
llama_kv_cache_clear(lctx); | |
llama_synchronize(lctx); | |
llama_perf_context_reset(lctx); | |
} | |
iparams.model = model; | |
iparams.context = lctx; | |
return iparams; | |
} | |
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters) { | |
llama_lora_adapter_clear(ctx); | |
for (auto & la : lora_adapters) { | |
if (la.scale != 0.0f) { | |
llama_lora_adapter_set(ctx, la.adapter, la.scale); | |
} | |
} | |
} | |
struct llama_model_params common_model_params_to_llama(const common_params & params) { | |
auto mparams = llama_model_default_params(); | |
if (params.n_gpu_layers != -1) { | |
mparams.n_gpu_layers = params.n_gpu_layers; | |
} | |
mparams.rpc_servers = params.rpc_servers.c_str(); | |
mparams.main_gpu = params.main_gpu; | |
mparams.split_mode = params.split_mode; | |
mparams.tensor_split = params.tensor_split; | |
mparams.use_mmap = params.use_mmap; | |
mparams.use_mlock = params.use_mlock; | |
mparams.check_tensors = params.check_tensors; | |
if (params.kv_overrides.empty()) { | |
mparams.kv_overrides = NULL; | |
} else { | |
GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key"); | |
mparams.kv_overrides = params.kv_overrides.data(); | |
} | |
return mparams; | |
} | |
static ggml_type kv_cache_type_from_str(const std::string & s) { | |
if (s == "f32") { | |
return GGML_TYPE_F32; | |
} | |
if (s == "f16") { | |
return GGML_TYPE_F16; | |
} | |
if (s == "q8_0") { | |
return GGML_TYPE_Q8_0; | |
} | |
if (s == "q4_0") { | |
return GGML_TYPE_Q4_0; | |
} | |
if (s == "q4_1") { | |
return GGML_TYPE_Q4_1; | |
} | |
if (s == "iq4_nl") { | |
return GGML_TYPE_IQ4_NL; | |
} | |
if (s == "q5_0") { | |
return GGML_TYPE_Q5_0; | |
} | |
if (s == "q5_1") { | |
return GGML_TYPE_Q5_1; | |
} | |
throw std::runtime_error("Unsupported cache type: " + s); | |
} | |
struct llama_context_params common_context_params_to_llama(const common_params & params) { | |
auto cparams = llama_context_default_params(); | |
cparams.n_ctx = params.n_ctx; | |
cparams.n_seq_max = params.n_parallel; | |
cparams.n_batch = params.n_batch; | |
cparams.n_ubatch = params.n_ubatch; | |
cparams.n_threads = params.cpuparams.n_threads; | |
cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ? | |
params.cpuparams.n_threads : params.cpuparams_batch.n_threads; | |
cparams.logits_all = params.logits_all; | |
cparams.embeddings = params.embedding; | |
cparams.rope_scaling_type = params.rope_scaling_type; | |
cparams.rope_freq_base = params.rope_freq_base; | |
cparams.rope_freq_scale = params.rope_freq_scale; | |
cparams.yarn_ext_factor = params.yarn_ext_factor; | |
cparams.yarn_attn_factor = params.yarn_attn_factor; | |
cparams.yarn_beta_fast = params.yarn_beta_fast; | |
cparams.yarn_beta_slow = params.yarn_beta_slow; | |
cparams.yarn_orig_ctx = params.yarn_orig_ctx; | |
cparams.pooling_type = params.pooling_type; | |
cparams.attention_type = params.attention_type; | |
cparams.defrag_thold = params.defrag_thold; | |
cparams.cb_eval = params.cb_eval; | |
cparams.cb_eval_user_data = params.cb_eval_user_data; | |
cparams.offload_kqv = !params.no_kv_offload; | |
cparams.flash_attn = params.flash_attn; | |
cparams.no_perf = params.no_perf; | |
if (params.reranking) { | |
cparams.embeddings = true; | |
cparams.pooling_type = LLAMA_POOLING_TYPE_RANK; | |
} | |
cparams.type_k = kv_cache_type_from_str(params.cache_type_k); | |
cparams.type_v = kv_cache_type_from_str(params.cache_type_v); | |
return cparams; | |
} | |
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) { | |
struct ggml_threadpool_params tpp; | |
ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults | |
if (params.mask_valid) { | |
std::memcpy(&tpp.cpumask, ¶ms.cpumask, GGML_MAX_N_THREADS); | |
} | |
tpp.prio = params.priority; | |
tpp.poll = params.poll; | |
tpp.strict_cpu = params.strict_cpu; | |
return tpp; | |
} | |
static bool starts_with(const std::string & str, const std::string & prefix) { | |
// While we wait for C++20's std::string::starts_with... | |
return str.rfind(prefix, 0) == 0; | |
} | |
static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_attempts, int retry_delay_seconds) { | |
int remaining_attempts = max_attempts; | |
while (remaining_attempts > 0) { | |
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts); | |
CURLcode res = curl_easy_perform(curl); | |
if (res == CURLE_OK) { | |
return true; | |
} | |
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000; | |
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay); | |
remaining_attempts--; | |
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay)); | |
} | |
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts); | |
return false; | |
} | |
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) { | |
// Initialize libcurl | |
std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup); | |
if (!curl) { | |
LOG_ERR("%s: error initializing libcurl\n", __func__); | |
return false; | |
} | |
bool force_download = false; | |
// Set the URL, allow to follow http redirection | |
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str()); | |
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L); | |
// Check if hf-token or bearer-token was specified | |
if (!hf_token.empty()) { | |
std::string auth_header = "Authorization: Bearer "; | |
auth_header += hf_token.c_str(); | |
struct curl_slist *http_headers = NULL; | |
http_headers = curl_slist_append(http_headers, auth_header.c_str()); | |
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers); | |
} | |
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of | |
// operating system. Currently implemented under MS-Windows. | |
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA); | |
// Check if the file already exists locally | |
struct stat model_file_info; | |
auto file_exists = (stat(path.c_str(), &model_file_info) == 0); | |
// If the file exists, check its JSON metadata companion file. | |
std::string metadata_path = path + ".json"; | |
nlohmann::json metadata; | |
std::string etag; | |
std::string last_modified; | |
if (file_exists) { | |
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block). | |
std::ifstream metadata_in(metadata_path); | |
if (metadata_in.good()) { | |
try { | |
metadata_in >> metadata; | |
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str()); | |
if (metadata.contains("url") && metadata.at("url").is_string()) { | |
auto previous_url = metadata.at("url").get<std::string>(); | |
if (previous_url != url) { | |
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str()); | |
return false; | |
} | |
} | |
if (metadata.contains("etag") && metadata.at("etag").is_string()) { | |
etag = metadata.at("etag"); | |
} | |
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) { | |
last_modified = metadata.at("lastModified"); | |
} | |
} catch (const nlohmann::json::exception & e) { | |
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what()); | |
return false; | |
} | |
} | |
} else { | |
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str()); | |
} | |
// Send a HEAD request to retrieve the etag and last-modified headers | |
struct common_load_model_from_url_headers { | |
std::string etag; | |
std::string last_modified; | |
}; | |
common_load_model_from_url_headers headers; | |
{ | |
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *); | |
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t { | |
common_load_model_from_url_headers *headers = (common_load_model_from_url_headers *) userdata; | |
static std::regex header_regex("([^:]+): (.*)\r\n"); | |
static std::regex etag_regex("ETag", std::regex_constants::icase); | |
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase); | |
std::string header(buffer, n_items); | |
std::smatch match; | |
if (std::regex_match(header, match, header_regex)) { | |
const std::string & key = match[1]; | |
const std::string & value = match[2]; | |
if (std::regex_match(key, match, etag_regex)) { | |
headers->etag = value; | |
} else if (std::regex_match(key, match, last_modified_regex)) { | |
headers->last_modified = value; | |
} | |
} | |
return n_items; | |
}; | |
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb | |
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress | |
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback)); | |
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers); | |
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS); | |
if (!was_perform_successful) { | |
return false; | |
} | |
long http_code = 0; | |
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code); | |
if (http_code != 200) { | |
// HEAD not supported, we don't know if the file has changed | |
// force trigger downloading | |
force_download = true; | |
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code); | |
} | |
} | |
bool should_download = !file_exists || force_download; | |
if (!should_download) { | |
if (!etag.empty() && etag != headers.etag) { | |
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str()); | |
should_download = true; | |
} else if (!last_modified.empty() && last_modified != headers.last_modified) { | |
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str()); | |
should_download = true; | |
} | |
} | |
if (should_download) { | |
std::string path_temporary = path + ".downloadInProgress"; | |
if (file_exists) { | |
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str()); | |
if (remove(path.c_str()) != 0) { | |
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str()); | |
return false; | |
} | |
} | |
// Set the output file | |
struct FILE_deleter { | |
void operator()(FILE * f) const { | |
fclose(f); | |
} | |
}; | |
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb")); | |
if (!outfile) { | |
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str()); | |
return false; | |
} | |
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd); | |
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t { | |
return fwrite(data, size, nmemb, (FILE *)fd); | |
}; | |
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L); | |
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback)); | |
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get()); | |
// display download progress | |
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L); | |
// helper function to hide password in URL | |
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string { | |
std::size_t protocol_pos = url.find("://"); | |
if (protocol_pos == std::string::npos) { | |
return url; // Malformed URL | |
} | |
std::size_t at_pos = url.find('@', protocol_pos + 3); | |
if (at_pos == std::string::npos) { | |
return url; // No password in URL | |
} | |
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos); | |
}; | |
// start the download | |
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__, | |
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str()); | |
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS); | |
if (!was_perform_successful) { | |
return false; | |
} | |
long http_code = 0; | |
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code); | |
if (http_code < 200 || http_code >= 400) { | |
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code); | |
return false; | |
} | |
// Causes file to be closed explicitly here before we rename it. | |
outfile.reset(); | |
// Write the updated JSON metadata file. | |
metadata.update({ | |
{"url", url}, | |
{"etag", headers.etag}, | |
{"lastModified", headers.last_modified} | |
}); | |
std::ofstream(metadata_path) << metadata.dump(4); | |
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str()); | |
if (rename(path_temporary.c_str(), path.c_str()) != 0) { | |
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str()); | |
return false; | |
} | |
} | |
return true; | |
} | |
struct llama_model * common_load_model_from_url( | |
const char * model_url, | |
const char * path_model, | |
const char * hf_token, | |
const struct llama_model_params & params) { | |
// Basic validation of the model_url | |
if (!model_url || strlen(model_url) == 0) { | |
LOG_ERR("%s: invalid model_url\n", __func__); | |
return NULL; | |
} | |
if (!common_download_file(model_url, path_model, hf_token)) { | |
return NULL; | |
} | |
// check for additional GGUFs split to download | |
int n_split = 0; | |
{ | |
struct gguf_init_params gguf_params = { | |
/*.no_alloc = */ true, | |
/*.ctx = */ NULL, | |
}; | |
auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params); | |
if (!ctx_gguf) { | |
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, path_model); | |
return NULL; | |
} | |
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT); | |
if (key_n_split >= 0) { | |
n_split = gguf_get_val_u16(ctx_gguf, key_n_split); | |
} | |
gguf_free(ctx_gguf); | |
} | |
if (n_split > 1) { | |
char split_prefix[PATH_MAX] = {0}; | |
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0}; | |
// Verify the first split file format | |
// and extract split URL and PATH prefixes | |
{ | |
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) { | |
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, path_model, n_split); | |
return NULL; | |
} | |
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) { | |
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url, n_split); | |
return NULL; | |
} | |
} | |
// Prepare download in parallel | |
std::vector<std::future<bool>> futures_download; | |
for (int idx = 1; idx < n_split; idx++) { | |
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool { | |
char split_path[PATH_MAX] = {0}; | |
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split); | |
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0}; | |
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split); | |
return common_download_file(split_url, split_path, hf_token); | |
}, idx)); | |
} | |
// Wait for all downloads to complete | |
for (auto & f : futures_download) { | |
if (!f.get()) { | |
return NULL; | |
} | |
} | |
} | |
return llama_load_model_from_file(path_model, params); | |
} | |
struct llama_model * common_load_model_from_hf( | |
const char * repo, | |
const char * model, | |
const char * path_model, | |
const char * hf_token, | |
const struct llama_model_params & params) { | |
// construct hugging face model url: | |
// | |
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf | |
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf | |
// | |
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf | |
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf | |
// | |
std::string model_url = "https://huggingface.co/"; | |
model_url += repo; | |
model_url += "/resolve/main/"; | |
model_url += model; | |
return common_load_model_from_url(model_url.c_str(), path_model, hf_token, params); | |
} | |
struct llama_model * common_load_model_from_url( | |
const char * /*model_url*/, | |
const char * /*path_model*/, | |
const char * /*hf_token*/, | |
const struct llama_model_params & /*params*/) { | |
LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__); | |
return nullptr; | |
} | |
struct llama_model * common_load_model_from_hf( | |
const char * /*repo*/, | |
const char * /*model*/, | |
const char * /*path_model*/, | |
const char * /*hf_token*/, | |
const struct llama_model_params & /*params*/) { | |
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__); | |
return nullptr; | |
} | |
// | |
// Batch utils | |
// | |
void common_batch_clear(struct llama_batch & batch) { | |
batch.n_tokens = 0; | |
} | |
void common_batch_add( | |
struct llama_batch & batch, | |
llama_token id, | |
llama_pos pos, | |
const std::vector<llama_seq_id> & seq_ids, | |
bool logits) { | |
GGML_ASSERT(batch.seq_id[batch.n_tokens] && "llama_batch size exceeded"); | |
batch.token [batch.n_tokens] = id; | |
batch.pos [batch.n_tokens] = pos; | |
batch.n_seq_id[batch.n_tokens] = seq_ids.size(); | |
for (size_t i = 0; i < seq_ids.size(); ++i) { | |
batch.seq_id[batch.n_tokens][i] = seq_ids[i]; | |
} | |
batch.logits [batch.n_tokens] = logits; | |
batch.n_tokens++; | |
} | |
// | |
// Vocab utils | |
// | |
std::vector<llama_token> common_tokenize( | |
const struct llama_context * ctx, | |
const std::string & text, | |
bool add_special, | |
bool parse_special) { | |
return common_tokenize(llama_get_model(ctx), text, add_special, parse_special); | |
} | |
std::vector<llama_token> common_tokenize( | |
const struct llama_model * model, | |
const std::string & text, | |
bool add_special, | |
bool parse_special) { | |
// upper limit for the number of tokens | |
int n_tokens = text.length() + 2 * add_special; | |
std::vector<llama_token> result(n_tokens); | |
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); | |
if (n_tokens < 0) { | |
result.resize(-n_tokens); | |
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); | |
GGML_ASSERT(check == -n_tokens); | |
} else { | |
result.resize(n_tokens); | |
} | |
return result; | |
} | |
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) { | |
std::string piece; | |
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n' | |
const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special); | |
if (n_chars < 0) { | |
piece.resize(-n_chars); | |
int check = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special); | |
GGML_ASSERT(check == -n_chars); | |
} | |
else { | |
piece.resize(n_chars); | |
} | |
return piece; | |
} | |
std::string common_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) { | |
std::string text; | |
text.resize(std::max(text.capacity(), tokens.size())); | |
int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special); | |
if (n_chars < 0) { | |
text.resize(-n_chars); | |
n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special); | |
GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization | |
} | |
text.resize(n_chars); | |
// NOTE: the original tokenizer decodes bytes after collecting the pieces. | |
return text; | |
} | |
// | |
// Chat template utils | |
// | |
bool common_chat_verify_template(const std::string & tmpl) { | |
llama_chat_message chat[] = {{"user", "test"}}; | |
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0); | |
return res >= 0; | |
} | |
std::string common_chat_apply_template(const struct llama_model * model, | |
const std::string & tmpl, | |
const std::vector<common_chat_msg> & msgs, | |
bool add_ass) { | |
int alloc_size = 0; | |
bool fallback = false; // indicate if we must fallback to default chatml | |
std::vector<llama_chat_message> chat; | |
for (auto & msg : msgs) { | |
chat.push_back({msg.role.c_str(), msg.content.c_str()}); | |
alloc_size += (msg.role.size() + msg.content.size()) * 1.25; | |
} | |
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str(); | |
std::vector<char> buf(alloc_size); | |
// run the first time to get the total output length | |
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size()); | |
// error: chat template is not supported | |
if (res < 0) { | |
if (ptr_tmpl != nullptr) { | |
// if the custom "tmpl" is not supported, we throw an error | |
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template() | |
throw std::runtime_error("this custom template is not supported"); | |
} else { | |
// If the built-in template is not supported, we default to chatml | |
res = llama_chat_apply_template(nullptr, "chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size()); | |
fallback = true; | |
} | |
} | |
// if it turns out that our buffer is too small, we resize it | |
if ((size_t) res > buf.size()) { | |
buf.resize(res); | |
res = llama_chat_apply_template( | |
fallback ? nullptr : model, | |
fallback ? "chatml" : ptr_tmpl, | |
chat.data(), chat.size(), add_ass, buf.data(), buf.size()); | |
} | |
std::string formatted_chat(buf.data(), res); | |
return formatted_chat; | |
} | |
std::string common_chat_format_single(const struct llama_model * model, | |
const std::string & tmpl, | |
const std::vector<common_chat_msg> & past_msg, | |
const common_chat_msg & new_msg, | |
bool add_ass) { | |
std::ostringstream ss; | |
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(model, tmpl, past_msg, false); | |
std::vector<common_chat_msg> chat_new(past_msg); | |
// if the past_msg ends with a newline, we must preserve it in the formatted version | |
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') { | |
ss << "\n"; | |
}; | |
// format chat with new_msg | |
chat_new.push_back(new_msg); | |
auto fmt_new_msg = common_chat_apply_template(model, tmpl, chat_new, add_ass); | |
// get the diff part | |
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size()); | |
return ss.str(); | |
} | |
std::string common_chat_format_example(const struct llama_model * model, | |
const std::string & tmpl) { | |
std::vector<common_chat_msg> msgs = { | |
{"system", "You are a helpful assistant"}, | |
{"user", "Hello"}, | |
{"assistant", "Hi there"}, | |
{"user", "How are you?"}, | |
}; | |
return common_chat_apply_template(model, tmpl, msgs, true); | |
} | |
// | |
// KV cache utils | |
// | |
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) { | |
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+"; | |
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d", | |
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx); | |
llama_kv_cache_view_cell * c_curr = view.cells; | |
llama_seq_id * cs_curr = view.cells_sequences; | |
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) { | |
if (i % row_size == 0) { | |
printf("\n%5d: ", i); | |
} | |
int seq_count = 0; | |
for (int j = 0; j < view.n_seq_max; j++) { | |
if (cs_curr[j] >= 0) { seq_count++; } | |
} | |
putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]); | |
} | |
printf("\n=== Done dumping\n"); | |
} | |
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) { | |
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; | |
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n", | |
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx); | |
std::unordered_map<llama_seq_id, size_t> seqs; | |
llama_kv_cache_view_cell * c_curr = view.cells; | |
llama_seq_id * cs_curr = view.cells_sequences; | |
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) { | |
for (int j = 0; j < view.n_seq_max; j++) { | |
if (cs_curr[j] < 0) { continue; } | |
if (seqs.find(cs_curr[j]) == seqs.end()) { | |
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; } | |
const size_t sz = seqs.size(); | |
seqs[cs_curr[j]] = sz; | |
} | |
} | |
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; } | |
} | |
printf("=== Sequence legend: "); | |
for (const auto & it : seqs) { | |
printf("%zu=%d, ", it.second, it.first); | |
} | |
printf("'+'=other sequence ids"); | |
c_curr = view.cells; | |
cs_curr = view.cells_sequences; | |
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) { | |
if (i % row_size == 0) { | |
printf("\n%5d: ", i); | |
} | |
for (int j = 0; j < view.n_seq_max; j++) { | |
if (cs_curr[j] >= 0) { | |
const auto & it = seqs.find(cs_curr[j]); | |
putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+'); | |
} else { | |
putchar('.'); | |
} | |
} | |
putchar(' '); | |
} | |
printf("\n=== Done dumping\n"); | |
} | |
// | |
// Embedding utils | |
// | |
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) { | |
double sum = 0.0; | |
switch (embd_norm) { | |
case -1: // no normalisation | |
sum = 1.0; | |
break; | |
case 0: // max absolute | |
for (int i = 0; i < n; i++) { | |
if (sum < std::abs(inp[i])) sum = std::abs(inp[i]); | |
} | |
sum /= 32760.0; // make an int16 range | |
break; | |
case 2: // euclidean | |
for (int i = 0; i < n; i++) { | |
sum += inp[i] * inp[i]; | |
} | |
sum = std::sqrt(sum); | |
break; | |
default: // p-norm (euclidean is p-norm p=2) | |
for (int i = 0; i < n; i++) { | |
sum += std::pow(std::abs(inp[i]), embd_norm); | |
} | |
sum = std::pow(sum, 1.0 / embd_norm); | |
break; | |
} | |
const float norm = sum > 0.0 ? 1.0 / sum : 0.0f; | |
for (int i = 0; i < n; i++) { | |
out[i] = inp[i] * norm; | |
} | |
} | |
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n){ | |
double sum = 0.0; | |
double sum1 = 0.0; | |
double sum2 = 0.0; | |
for (int i = 0; i < n; i++) { | |
sum += embd1[i] * embd2[i]; | |
sum1 += embd1[i] * embd1[i]; | |
sum2 += embd2[i] * embd2[i]; | |
} | |
// Handle the case where one or both vectors are zero vectors | |
if (sum1 == 0.0 || sum2 == 0.0) { | |
if (sum1 == 0.0 && sum2 == 0.0) { | |
return 1.0f; // two zero vectors are similar | |
} | |
return 0.0f; | |
} | |
return sum / (sqrt(sum1) * sqrt(sum2)); | |
} | |
// | |
// Control vector utils | |
// | |
static common_control_vector_data common_control_vector_load_one(const common_control_vector_load_info & load_info) { | |
common_control_vector_data result = { -1, {} }; | |
ggml_context * ctx = nullptr; | |
struct gguf_init_params meta_gguf_params = { | |
/* .no_alloc = */ false, | |
/* .ctx = */ &ctx, | |
}; | |
struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params); | |
if (!ctx_gguf) { | |
LOG_ERR("%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str()); | |
return result; | |
} | |
int32_t n_tensors = gguf_get_n_tensors(ctx_gguf); | |
if (n_tensors == 0) { | |
LOG_WRN("%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str()); | |
} | |
for (int i = 0; i < n_tensors; i++) { | |
std::string name = gguf_get_tensor_name(ctx_gguf, i); | |
int layer_idx = -1; | |
// split on '.' | |
size_t dotpos = name.find('.'); | |
if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") { | |
try { | |
layer_idx = std::stoi(name.substr(dotpos + 1)); | |
} catch (...) { | |
layer_idx = -1; | |
} | |
} | |
if (layer_idx < 0) { | |
LOG_ERR("%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str()); | |
result.n_embd = -1; | |
break; | |
} else if (layer_idx == 0) { | |
LOG_ERR("%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str()); | |
result.n_embd = -1; | |
break; | |
} | |
struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str()); | |
if (tensor->type != GGML_TYPE_F32) { | |
LOG_ERR("%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str()); | |
result.n_embd = -1; | |
break; | |
} | |
if (ggml_n_dims(tensor) != 1) { | |
LOG_ERR("%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str()); | |
result.n_embd = -1; | |
break; | |
} | |
if (result.n_embd == -1) { | |
result.n_embd = ggml_nelements(tensor); | |
} else if (ggml_nelements(tensor) != result.n_embd) { | |
LOG_ERR("%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str()); | |
result.n_embd = -1; | |
break; | |
} | |
// extend if necessary - do not store data for layer 0 (it's not used) | |
result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f); | |
const float * src = (const float *) tensor->data; | |
float * dst = result.data.data() + result.n_embd * (layer_idx - 1); // layer 1 at [0] | |
for (int j = 0; j < result.n_embd; j++) { | |
dst[j] += src[j] * load_info.strength; // allows multiple directions for same layer in same file | |
} | |
} | |
if (result.n_embd == -1) { | |
LOG_WRN("%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str()); | |
result.data.clear(); | |
} | |
gguf_free(ctx_gguf); | |
ggml_free(ctx); | |
return result; | |
} | |
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos) { | |
common_control_vector_data result = { -1, {} }; | |
for (const auto & info : load_infos) { | |
auto cur = common_control_vector_load_one(info); | |
if (cur.n_embd == -1) { | |
result.n_embd = -1; | |
break; | |
} | |
if (result.n_embd != -1 && result.n_embd != cur.n_embd) { | |
LOG_ERR("%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str()); | |
result.n_embd = -1; | |
break; | |
} | |
if (result.n_embd == -1) { | |
result = std::move(cur); | |
} else { | |
result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f); // extend if necessary | |
for (size_t i = 0; i < cur.data.size(); i++) { | |
result.data[i] += cur.data[i]; | |
} | |
} | |
} | |
if (result.n_embd == -1) { | |
LOG_ERR("%s: no valid control vector files passed\n", __func__); | |
result.data.clear(); | |
} | |
return result; | |
} | |
// | |
// YAML utils | |
// | |
void yaml_dump_vector_float(FILE * stream, const char * prop_name, const std::vector<float> & data) { | |
if (data.empty()) { | |
fprintf(stream, "%s:\n", prop_name); | |
return; | |
} | |
fprintf(stream, "%s: [", prop_name); | |
for (size_t i = 0; i < data.size() - 1; ++i) { | |
fprintf(stream, "%e, ", data[i]); | |
} | |
fprintf(stream, "%e]\n", data.back()); | |
} | |
void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector<int> & data) { | |
if (data.empty()) { | |
fprintf(stream, "%s:\n", prop_name); | |
return; | |
} | |
fprintf(stream, "%s: [", prop_name); | |
for (size_t i = 0; i < data.size() - 1; ++i) { | |
fprintf(stream, "%d, ", data[i]); | |
} | |
fprintf(stream, "%d]\n", data.back()); | |
} | |
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) { | |
std::string data_str(data == NULL ? "" : data); | |
if (data_str.empty()) { | |
fprintf(stream, "%s:\n", prop_name); | |
return; | |
} | |
size_t pos_start = 0; | |
size_t pos_found = 0; | |
if (std::isspace(data_str[0]) || std::isspace(data_str.back())) { | |
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n"); | |
data_str = std::regex_replace(data_str, std::regex("\""), "\\\""); | |
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)"); | |
data_str = "\"" + data_str + "\""; | |
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); | |
return; | |
} | |
if (data_str.find('\n') == std::string::npos) { | |
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); | |
return; | |
} | |
fprintf(stream, "%s: |\n", prop_name); | |
while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) { | |
fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str()); | |
pos_start = pos_found + 1; | |
} | |
} | |
void yaml_dump_non_result_info(FILE * stream, const common_params & params, const llama_context * lctx, | |
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) { | |
ggml_cpu_init(); // some ARM features are detected at runtime | |
const auto & sparams = params.sparams; | |
fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT); | |
fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER); | |
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false"); | |
fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false"); | |
fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false"); | |
fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false"); | |
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false"); | |
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false"); | |
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false"); | |
fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false"); | |
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false"); | |
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false"); | |
fprintf(stream, "cpu_has_riscv_v: %s\n", ggml_cpu_has_riscv_v() ? "true" : "false"); | |
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false"); | |
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false"); | |
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false"); | |
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false"); | |
fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false"); | |
fprintf(stream, "debug: false\n"); | |
fprintf(stream, "debug: true\n"); | |
fprintf(stream, "model_desc: %s\n", model_desc); | |
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx))); | |
fprintf(stream, "optimize: true\n"); | |
fprintf(stream, "optimize: false\n"); | |
fprintf(stream, "time: %s\n", timestamp.c_str()); | |
fprintf(stream, "\n"); | |
fprintf(stream, "###############\n"); | |
fprintf(stream, "# User Inputs #\n"); | |
fprintf(stream, "###############\n"); | |
fprintf(stream, "\n"); | |
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str()); | |
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch); | |
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks); | |
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false"); | |
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx); | |
fprintf(stream, "dry_allowed_length: %d # default: 2\n", sparams.dry_allowed_length); | |
fprintf(stream, "dry_base: %.2f # default: 1.75\n", sparams.dry_base); | |
fprintf(stream, "dry_multiplier: %.1f # default: 0.0\n", sparams.dry_multiplier); | |
fprintf(stream, "dry_penalty_last_n: %d # default: -1 (0 = disable, -1 = context size)\n", sparams.dry_penalty_last_n); | |
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false"); | |
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n"); | |
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq); | |
yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str()); | |
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n"); | |
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false"); | |
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks); | |
fprintf(stream, "ignore_eos: %s # default: false\n", sparams.ignore_eos ? "true" : "false"); | |
yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str()); | |
fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false"); | |
yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str()); | |
fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false"); | |
fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false"); | |
fprintf(stream, "keep: %d # default: 0\n", params.n_keep); | |
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); | |
fprintf(stream, "logit_bias:\n"); | |
for (const auto & logit_bias : sparams.logit_bias) { | |
fprintf(stream, " %d: %f", logit_bias.token, logit_bias.bias); | |
} | |
fprintf(stream, "lora:\n"); | |
for (auto & la : params.lora_adapters) { | |
if (la.scale == 1.0f) { | |
fprintf(stream, " - %s\n", la.path.c_str()); | |
} | |
} | |
fprintf(stream, "lora_scaled:\n"); | |
for (auto & la : params.lora_adapters) { | |
if (la.scale != 1.0f) { | |
fprintf(stream, " - %s: %f\n", la.path.c_str(), la.scale); | |
} | |
} | |
fprintf(stream, "lora_init_without_apply: %s # default: false\n", params.lora_init_without_apply ? "true" : "false"); | |
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); | |
fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep); | |
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat); | |
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau); | |
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta); | |
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); | |
fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH); | |
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); | |
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); | |
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); | |
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); | |
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs); | |
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); | |
fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false"); | |
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); | |
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); | |
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present); | |
yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str()); | |
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str()); | |
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false"); | |
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false"); | |
yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens); | |
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat); | |
fprintf(stream, "reverse_prompt:\n"); | |
for (std::string ap : params.antiprompt) { | |
size_t pos = 0; | |
while ((pos = ap.find('\n', pos)) != std::string::npos) { | |
ap.replace(pos, 1, "\\n"); | |
pos += 1; | |
} | |
fprintf(stream, " - %s\n", ap.c_str()); | |
} | |
fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base); | |
fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale); | |
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); | |
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); | |
fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false"); | |
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp); | |
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices()); | |
yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector); | |
fprintf(stream, "threads: %d # default: %u\n", params.cpuparams.n_threads, std::thread::hardware_concurrency()); | |
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k); | |
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p); | |
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p); | |
fprintf(stream, "xtc_probability: %f # default: 0.0\n", sparams.xtc_probability); | |
fprintf(stream, "xtc_threshold: %f # default: 0.1\n", sparams.xtc_threshold); | |
fprintf(stream, "typ_p: %f # default: 1.0\n", sparams.typ_p); | |
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); | |
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false"); | |
} | |