import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "google/flan-t5-xxl" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Define the chat function def chat(message): # Encode the user's message inputs = tokenizer.encode(message, return_tensors="pt") # Generate a response from the model outputs = model.generate(inputs, max_length=1024, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Return the response return response # Set up the Gradio interface block = gr.Blocks(css=".gradio-container {background-color: lightgray}") with block: with gr.Row(): gr.Markdown("

SplitticAI Chatbot

") chatbot = gr.Chatbot() with gr.Row(): message = gr.Textbox( label="What's your question?", placeholder="What would you like to ask me?", lines=1, ) submit = gr.Button(value="Send", variant="secondary").style(full_width=False) gr.Examples( examples=[ "What is artificial intelligence?", "How does SplitticAI work?", "Can you tell me a joke?", ], inputs=message, ) gr.HTML("Ask SplitticAI anything and get an answer!") gr.HTML( "
Powered by google/flax-t5-xxl-qa-121k
" ) state = gr.State() agent_state = gr.State() submit.click(chat, inputs=[message], outputs=[chatbot]) block.launch(debug=True)