import gradio as gr import numpy as np import torch from datasets import load_dataset, Audio from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperFeatureExtractor, WhisperTokenizer, WhisperProcessor, AutomaticSpeechRecognitionPipeline, WhisperForConditionalGeneration from dataclasses import dataclass device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3", device=device) # load text-to-speech checkpoint and speaker embeddings processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("Daniel981215/speecht5_tts_finetuned_voxpopuli_es").to(device) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) replacements = {'á': 'a', 'é': 'e', 'í': 'i', 'ó': 'o', 'ú': 'u', '¿': '', '?': '', '1': 'uno', '2':'dos','3':'tres', '4':'cuatro', '5':'cinco', '6': 'seis', '7':'siete', '8':'ocho', '9':'nueve', '0':'cero'} def normalize_replace_string(input_string, replacements): normalized_string = re.sub(r'\s+', ' ', input_string).strip().lower() for old, new in replacements.items(): normalized_string = normalized_string.replace(old, new) return normalized_string def translate(audio): outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "es"}) output_txt = normalize_replace_string(outputs["text"], replacements) return output_txt def synthesise(text): inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ speech-to-speech translation (STST) """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()