# https://ai-brewery.medium.com/conversational-chatbot-using-transformers-and-streamlit-73d621afde9 import streamlit as st import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer @st.cache(hash_funcs= {transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast: hash}, suppress_st_warning=True, allow_output_mutation=True) def load_data(): tokenizer = AutoTokenizer.from_pretrained("DeepPavlov/rubert-base-cased") model = AutoModelForCausalLM.from_pretrained("DeepPavlov/rubert-base-cased") return tokenizer, model tokenizer, model = load_data() st.write("Welcome to the Chatbot. I am still learning, please be patient") input = st.text_input('User:') if 'count' not in st.session_state or st.session_state.count == 6: st.session_state.count = 0 st.session_state.chat_history_ids = None st.session_state.old_response = '' else: st.session_state.count += 1 new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') bot_input_ids = torch.cat([st.session_state.chat_history_ids, new_user_input_ids], dim=-1) if st.session_state.count > 1 else new_user_input_ids st.session_state.chat_history_ids = model.generate(bot_input_ids, max_length=5000, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(st.session_state.chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) if st.session_state.old_response == response: bot_input_ids = new_user_input_ids st.session_state.chat_history_ids = model.generate(bot_input_ids, max_length=5000, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(st.session_state.chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) st.write(f"Chatbot: {response}") st.session_state.old_response = response