Spaces:
Running
Running
import gradio as gr | |
import os | |
from langchain.document_loaders import WebBaseLoader | |
from langchain_community.vectorstores import FAISS | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.chains import ConversationChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain_community.llms import HuggingFaceEndpoint | |
from sentence_transformers import SentenceTransformer | |
from langchain_ollama import ChatOllama | |
import re | |
import torch | |
def preprocessing_text(document: list) -> list: | |
document[0].page_content = re.sub(r"\n{2,}", "\n\n", document[0].page_content) | |
return document | |
def loading_the_webpage(url: str) -> list: | |
loader = WebBaseLoader(url) | |
document = preprocessing_text(loader.load()) | |
return document | |
def chunking(document: list) -> list: | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size= 1024, | |
chunk_overlap= 128, | |
separators= ["\n\n", "\n", " ", ""]) | |
return text_splitter.split_documents(documents= document) | |
def create_vector_db(chunked_documents): | |
embeddings = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True) | |
vector_db = FAISS.from_documents(chunked_documents, embeddings) | |
return vector_db | |
# Initialize langchain LLM chain | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
llm = ChatOllama(model= "mistral", | |
temperature= temperature, | |
top_k= top_k, | |
num_predict= max_tokens) | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever=vector_db.as_retriever() | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
) | |
return qa_chain | |
def process_url_and_query(url: str, query: str): | |
# Load and process the webpage | |
documents = loading_the_webpage(url) | |
documents = preprocessing_text(documents) | |
# Chunk the documents | |
chunked_documents = chunking(documents) | |
# Create a vector database from chunked documents | |
vector_db = create_vector_db(chunked_documents) | |
# Initialize the LLM chain | |
qa_chain = initialize_llmchain(llm_model="mistral", temperature=0.7, max_tokens=150, top_k=5, vector_db=vector_db) | |
# Get the answer for the user's query | |
answer = qa_chain({"question": query}) | |
return answer['answer'] | |
with gr.Blocks() as demo: | |
gr.Markdown("# Webpage Querying App") | |
url_input = gr.Textbox(label="Enter URL") | |
query_input = gr.Textbox(label="Enter your query") | |
submit_button = gr.Button("Submit") | |
output_textbox = gr.Textbox(label="Response", interactive=False) | |
submit_button.click(process_url_and_query, inputs=[url_input, query_input], outputs=output_textbox) | |
# Launch the app | |
demo.launch() | |
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |