import torch import streamlit as st from random import choice from annotated_text import annotated_text from helpers import * with open("sentences.pt", 'rb') as f: sentences = torch.load(f) sentence = choice(sentences) st.title("Semantic Frame Augmentation") st.subheader("Analysing difficult low-resource domains with only a handful of examples") st.write("This space uses a google/mobilebert-uncased model for NER") augment = st.toggle('Use augmented model for NER', value=False) txt = st.text_area( "Text to analyze", sentence, max_chars=500 ) if augment: st.write("with augmentation:") tokens = augmented_classifier(txt) else: st.write("without augmentation:") tokens = baseline_classifier(txt) st.subheader("Entity analysis:") annotated_text(annotate_sentence(sentence, tokens))