import time import logging import gradio as gr import os from src.llm_boilers import llm_boiler logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO) logging.warning("READY. App started...") class Chat: default_system_prompt = "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers." system_format = "<|im_start|>system\n{}<|im_end|>\n" def __init__( self, system: str = None, user: str = None, assistant: str = None ) -> None: if system is not None: self.set_system_prompt(system) else: self.reset_system_prompt() self.user = user if user else "<|im_start|>user\n{}<|im_end|>\n" self.assistant = ( assistant if assistant else "<|im_start|>assistant\n{}<|im_end|>\n" ) self.response_prefix = self.assistant.split("{}")[0] def set_system_prompt(self, system_prompt): # self.system = self.system_format.format(system_prompt) return system_prompt def reset_system_prompt(self): return self.set_system_prompt(self.default_system_prompt) def history_as_formatted_str(self, system, history) -> str: system = self.system_format.format(system) text = system + "".join( [ "\n".join( [ self.user.format(item[0]), self.assistant.format(item[1]), ] ) for item in history[:-1] ] ) text += self.user.format(history[-1][0]) text += self.response_prefix # stopgap solution to too long sequences if len(text) > 4500: # delete from the middle between <|im_start|> and <|im_end|> # find the middle ones, then expand out start = text.find("<|im_start|>", 139) end = text.find("<|im_end|>", 139) while end < len(text) and len(text) > 4500: end = text.find("<|im_end|>", end + 1) text = text[:start] + text[end + 1 :] if len(text) > 4500: # the nice way didn't work, just truncate # deleting the beginning text = text[-4500:] return text def clear_history(self, history): return [] def turn(self, user_input: str): self.user_turn(user_input) return self.bot_turn() def user_turn(self, user_input: str, history): history.append([user_input, ""]) return user_input, history def bot_turn(self, system, history, openai_key): conversation = self.history_as_formatted_str(system, history) assistant_response = call_inf_server(conversation, openai_key) # history[-1][-1] = assistant_response # return history history[-1][1] = "" for chunk in assistant_response: try: decoded_output = chunk["choices"][0]["delta"]["content"] history[-1][1] += decoded_output yield history except KeyError: pass def call_inf_server(prompt, openai_key): model_id = "eolionross/gpt-3.5-turbo-demo" # "gpt-3.5-turbo-16k", model = llm_boiler(model_id, openai_key) logging.warning(f'Inf via "{model_id}"" for prompt "{prompt}"') try: # run text generation response = model.run(prompt, temperature=1.0) logging.warning(f"Result of text generation: {response}") return response except Exception as e: # assume it is our error # just wait and try one more time print(e) time.sleep(2) response = model.run(prompt, temperature=1.0) logging.warning(f"Result of text generation: {response}") return response with gr.Blocks(theme='ParityError/Anime') as demo: gr.Markdown( """

Chat with gpt-3.5-turbo

""" ) conversation = Chat() with gr.Row(): with gr.Column(): # to do: change to openaikey input for public release openai_key = gr.Textbox( label="OpenAI Key", value= "", type="password", placeholder="sk..", info="", ) chatbot = gr.Chatbot().style(height=400) with gr.Row(): with gr.Column(): msg = gr.Textbox( label="Chat Message Box", placeholder="Chat Message Box", show_label=False, ).style(container=False) with gr.Column(): with gr.Row(): submit = gr.Button("Submit") stop = gr.Button("Stop") clear = gr.Button("Clear") with gr.Row(): with gr.Accordion("Advanced Options:", open=False): with gr.Row(): with gr.Column(scale=2): system = gr.Textbox( label="System Prompt", value=Chat.default_system_prompt, show_label=False, ).style(container=False) with gr.Column(): with gr.Row(): change = gr.Button("Change System Prompt") reset = gr.Button("Reset System Prompt") with gr.Row(): gr.Markdown( "Disclaimer: The gpt-3.5-turbo model can produce factually incorrect output, and should not be solely relied on to produce " "factually accurate information. The gpt-3.5-turbo model was trained on various public datasets; while great efforts " "have been taken to clean the pretraining data, it is possible that this model could generate lewd, " "biased, or otherwise offensive outputs.", elem_classes=["disclaimer"], ) submit_event = msg.submit( fn=conversation.user_turn, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False, ).then( fn=conversation.bot_turn, inputs=[system, chatbot, openai_key], outputs=[chatbot], queue=True, ) submit_click_event = submit.click( fn=conversation.user_turn, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False, ).then( fn=conversation.bot_turn, inputs=[system, chatbot, openai_key], outputs=[chatbot], queue=True, ) stop.click( fn=None, inputs=None, outputs=None, cancels=[submit_event, submit_click_event], queue=False, ) clear.click(lambda: None, None, chatbot, queue=False).then( fn=conversation.clear_history, inputs=[chatbot], outputs=[chatbot], queue=False, ) change.click( fn=conversation.set_system_prompt, inputs=[system], outputs=[system], queue=False, ) reset.click( fn=conversation.reset_system_prompt, inputs=[], outputs=[system], queue=False, ) demo.queue(max_size=36, concurrency_count=14).launch(debug=True)