import subprocess subprocess.run( 'pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True ) import os import re import time import torch import spaces import gradio as gr from threading import Thread from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer ) # Configuration Constants MODEL_ID = "Daemontatox/Sphinx2.0" DEFAULT_SYSTEM_PROMPT = """You are a highly intelligent reasoning assistant. For every question, follow these steps and use tags to structure your response for clarity and transparency: [Understand]: Analyze the question to identify key details and clarify the goal. [Plan]: Outline a logical, step-by-step approach to address the question or problem. [Reason]: Execute the plan, applying logical reasoning, calculations, or analysis to reach a conclusion. Document each step clearly. [Reflect]: Review the reasoning and the final answer to ensure it is accurate, complete, and adheres to the principle of openness. [Respond]: Present a well-structured and transparent answer, enriched with supporting details as needed. Use these tags as headers in your response to make your thought process easy to follow and aligned with the principle of openness.""" # UI Configuration TITLE = "

AI Reasoning Assistant

" PLACEHOLDER = "Ask me anything! I'll think through it step by step." CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; } .message-wrap { overflow-x: auto; } .message-wrap p { margin-bottom: 1em; } .message-wrap pre { background-color: #f6f8fa; border-radius: 3px; padding: 16px; overflow-x: auto; } .message-wrap code { background-color: rgba(175,184,193,0.2); border-radius: 3px; padding: 0.2em 0.4em; font-family: monospace; } .custom-tag { color: #0066cc; font-weight: bold; } .chat-area { height: 500px !important; overflow-y: auto !important; } """ def initialize_model(): """Initialize the model with appropriate configurations""" quantization_config = BitsAndBytesConfig( load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16, bnb_8bit_use_double_quant=True ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.float16, device_map="cuda", attn_implementation="flash_attention_2", quantization_config=quantization_config ) return model, tokenizer def format_text(text): """Format text with proper spacing and tag highlighting (but keep tags visible)""" tag_patterns = [ (r'', '\n\n'), (r'', '\n\n'), (r'', '\n\n'), (r'', '\n\n'), (r'', '\n\n'), (r'', '\n\n'), (r'', '\n\n'), (r'', '\n\n') ] formatted = text for pattern, replacement in tag_patterns: formatted = re.sub(pattern, replacement, formatted) formatted = '\n'.join(line for line in formatted.split('\n') if line.strip()) return formatted def format_chat_history(history): """Format chat history for display, keeping tags visible""" formatted = [] for user_msg, assistant_msg in history: formatted.append(f"User: {user_msg}") if assistant_msg: formatted.append(f"Assistant: {assistant_msg}") return "\n\n".join(formatted) def create_examples(): """Create example queries for the UI""" return [ "Explain the concept of artificial intelligence.", "How does photosynthesis work?", "What are the main causes of climate change?", "Describe the process of protein synthesis.", "What are the key features of a democratic government?", "Explain the theory of relativity.", "How do vaccines work to prevent diseases?", "What are the major events of World War II?", "Describe the structure of a human cell.", "What is the role of DNA in genetics?" ] @spaces.GPU(duration=120) def chat_response( message: str, history: list, chat_display: str, system_prompt: str, temperature: float = 0.2, max_new_tokens: int = 4000, top_p: float = 0.8, top_k: int = 40, penalty: float = 1.2, ): """Generate chat responses, keeping tags visible in the output""" conversation = [ {"role": "system", "content": system_prompt} ] for prompt, answer in history: conversation.extend([ {"role": "user", "content": prompt}, {"role": "assistant", "content": answer} ]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template( conversation, add_generation_prompt=True, return_tensors="pt" ).to(model.device) streamer = TextIteratorStreamer( tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=False if temperature == 0 else True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=penalty, streamer=streamer, ) buffer = "" with torch.no_grad(): thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() history = history + [[message, ""]] for new_text in streamer: buffer += new_text formatted_buffer = format_text(buffer) history[-1][1] = formatted_buffer chat_display = format_chat_history(history) yield history, chat_display def process_example(example: str) -> tuple: """Process example query and return empty history and updated display""" return [], f"User: {example}\n\n" def main(): """Main function to set up and launch the Gradio interface""" global model, tokenizer model, tokenizer = initialize_model() with gr.Blocks(css=CSS, theme="soft") as demo: gr.HTML(TITLE) gr.DuplicateButton( value="Duplicate Space for private use", elem_classes="duplicate-button" ) with gr.Row(): with gr.Column(): chat_history = gr.State([]) chat_display = gr.TextArea( value="", label="Chat History", interactive=False, elem_classes=["chat-area"], ) message = gr.TextArea( placeholder=PLACEHOLDER, label="Your message", lines=3 ) with gr.Row(): submit = gr.Button("Send") clear = gr.Button("Clear") with gr.Accordion("⚙️ Advanced Settings", open=False): system_prompt = gr.TextArea( value=DEFAULT_SYSTEM_PROMPT, label="System Prompt", lines=5, ) temperature = gr.Slider( minimum=0, maximum=1, step=0.1, value=0.2, label="Temperature", ) max_tokens = gr.Slider( minimum=128, maximum=32000, step=128, value=4000, label="Max Tokens", ) top_p = gr.Slider( minimum=0.1, maximum=1.0, step=0.1, value=0.8, label="Top-p", ) top_k = gr.Slider( minimum=1, maximum=100, step=1, value=40, label="Top-k", ) penalty = gr.Slider( minimum=1.0, maximum=2.0, step=0.1, value=1.2, label="Repetition Penalty", ) examples = gr.Examples( examples=create_examples(), inputs=[message], outputs=[chat_history, chat_display], fn=process_example, cache_examples=False, ) # Set up event handlers submit_click = submit.click( chat_response, inputs=[ message, chat_history, chat_display, system_prompt, temperature, max_tokens, top_p, top_k, penalty, ], outputs=[chat_history, chat_display], show_progress=True, ) message.submit( chat_response, inputs=[ message, chat_history, chat_display, system_prompt, temperature, max_tokens, top_p, top_k, penalty, ], outputs=[chat_history, chat_display], show_progress=True, ) clear.click( lambda: ([], ""), outputs=[chat_history, chat_display], show_progress=True, ) submit_click.then(lambda: "", outputs=message) message.submit(lambda: "", outputs=message) return demo if __name__ == "__main__": demo = main() demo.launch()