import torch.nn as nn import torch import torchvision.models as models class CNNLSTMClassifier(nn.Module): def __init__(self, hidden_dim=128, num_classes=2): super().__init__() resnet = models.resnet18(weights=models.ResNet18_Weights.DEFAULT) self.cnn = nn.Sequential(*list(resnet.children())[:-1]) self.cnn_out_dim = 512 self.lstm = nn.LSTM(self.cnn_out_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, num_classes) def forward(self, x): B, T, C, H, W = x.shape x = x.view(B * T, C, H, W) with torch.no_grad(): cnn_out = self.cnn(x).view(B, T, -1) lstm_out, _ = self.lstm(cnn_out) return self.fc(lstm_out[:, -1, :])