import gradio as gr import pandas as pd import numpy as np from statsmodels.tsa.seasonal import STL from sklearn.ensemble import IsolationForest import matplotlib.pyplot as plt def detect_anomalies(series, seasonality_window=7, anomaly_threshold=0.05): # Decompose series using Seasonal-Trend decomposition using LOESS (STL) decomposition = STL(series, seasonal=seasonality_window).fit() trend = decomposition.trend seasonal = decomposition.seasonal residual = decomposition.resid # Combine trend and seasonal components to form detrended series detrended_series = series - trend - seasonal # Fit the Isolation Forest model to detect anomalies in the detrended series model = IsolationForest(contamination=anomaly_threshold) model.fit(detrended_series.values.reshape(-1, 1)) # Predict outliers in the detrended series outlier_predictions = model.predict(detrended_series.values.reshape(-1, 1)) anomalies = detrended_series[outlier_predictions == -1] return anomalies.index def plot_anomalies(series, anomalies): plt.figure(figsize=(12, 6)) plt.plot(series, label='Original Series') plt.scatter(anomalies, series[anomalies], color='red', label='Anomalies') plt.legend() plt.title('Time Series with Anomalies') plt.xlabel('Date') plt.ylabel('Value') plt.show() # Função para o Gradio def anomaly_detection_app(time_series_txt): # Carregar a série temporal a partir do arquivo de texto df = pd.read_csv(time_series_txt, header=None, names=["Date", "Value"]) df['Date'] = pd.to_datetime(df['Date']) df = df.set_index('Date') # Determinar a periodicidade da série (assumindo que é diária) # Se os dados forem de outra periodicidade, ajuste o valor apropriado aqui periodicity = 1 # Detectar anomalias na série temporal anomalies = detect_anomalies(df['Value'], seasonality_window=periodicity) # Plotar a série temporal com as anomalias destacadas plot_anomalies(df['Value'], anomalies) return anomalies # Resto do código continua o mesmo # Interface do Gradio iface = gr.Interface( fn=anomaly_detection_app, inputs=gr.inputs.File(label="Carregar série temporal (TXT)"), outputs="text", title="Análise de Anomalias em Séries Temporais", description="Este aplicativo detecta anomalias em uma série temporal carregada através de um arquivo de texto (TXT).", live=True ) if __name__ == "__main__": iface.launch()