from PIL import Image, ImageOps import numpy as np import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from keras.models import load_model import gradio as gr # Load the model and class names outside the prediction function model = load_model('keras_model.h5', compile=False) class_names = [line.strip() for line in open('labels.txt', 'r')] def create_plot(data): sns.set_theme(style="whitegrid") f, ax = plt.subplots(figsize=(5, 5)) sns.set_color_codes("pastel") sns.barplot(x="Total", y="Labels", data=data, label="Total", color="b") sns.set_color_codes("muted") sns.barplot(x="Confidence Score", y="Labels", data=data, label="Conficence Score", color="b") ax.legend(ncol=2, loc="lower right", frameon=True) sns.despine(left=True, bottom=True) return f def predict_tumor(img): np.set_printoptions(suppress=True) data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) # Resize and preprocess the input image size = (224, 224) image_PIL = Image.fromarray(img) image = ImageOps.fit(image_PIL, size, Image.LANCZOS) image_array = np.asarray(image) normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 data[0] = normalized_image_array # Make a prediction prediction = model.predict(data) index = np.argmax(prediction) class_name = class_names[index] confidence_score = prediction[0][index] c_name = class_name.strip() tumor_prediction = f"Model {'detected' if c_name == 'Yes' else 'did not detect'} Tumor" other_class = 'No' if c_name == 'Yes' else 'Yes' # Prepare data for plotting res = {"Labels": [c_name, other_class], "Confidence Score": [(confidence_score * 100), (1 - confidence_score) * 100], "Total": 100} data_for_plot = pd.DataFrame.from_dict(res) tumor_conf_plt = create_plot(data_for_plot) return tumor_prediction, tumor_conf_plt # Gradio Interface with gr.Blocks(title="Brain Tumor Detection | Data Science Dojo", css="styles.css") as demo: with gr.Row(): with gr.Column(scale=4): with gr.Row(): imgInput = gr.Image() with gr.Column(scale=1): tumor = gr.Textbox(label='Presence of Tumor') plot = gr.Plot(label="Plot") submit_button = gr.Button(value="Submit") submit_button.click(fn=predict_tumor, inputs=[imgInput], outputs=[tumor, plot]) gr.Examples( examples=["pred2.jpg", "pred3.jpg"], inputs=imgInput, outputs=[tumor, plot], fn=predict_tumor, cache_examples=True, ) demo.launch()