from PIL import Image import streamlit as st import cv2 import numpy as np import os import tensorflow as tf from IMVIP_Supplementary_Material.scripts import dfutils #methods used for DF-Net DESCRIPTION = """# DF-Net The Digital Forensics Network is designed and trained to detect and locate image manipulations. More information can be found in this [publication](https://zenodo.org/record/8214996) """ IMG_SIZE=256 tf.experimental.numpy.experimental_enable_numpy_behavior() #np.warnings.filterwarnings('error', category=np.VisibleDeprecationWarning) def check_forgery_df(img): shape_original = img.shape img = cv2.resize(img, (IMG_SIZE,IMG_SIZE)) x = np.expand_dims( img.astype('float32')/255., axis=0 ) pred1 = model_M1.predict(x, verbose=0) pred2= model_M2.predict(x, verbose=0) pred = np.max([pred1,pred2], axis=0) pred = dfutils.create_mask(pred) pred = pred.reshape(pred.shape[-3:-1]) resized_image = cv2.resize(pred, (shape_original[1],shape_original[0]), interpolation=cv2.INTER_LINEAR) return resized_image def evaluate(img): pre_t = check_forgery_df(img) st.image(pre_t, caption="White area indicates potential image manipulations.") st.markdown(DESCRIPTION) uploaded_file = st.file_uploader("Please upload an image", type=["jpeg", "jpg", "png"]) if uploaded_file is not None: #load models model_M1 = tf.keras.models.load_model("IMVIP_Supplementary_Material/models/model1/") model_M2 = tf.keras.models.load_model("IMVIP_Supplementary_Material/models/model2/") # Convert the file to an opencv image. file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) opencv_image = cv2.imdecode(file_bytes, 1) reversed_image = opencv_image[:, :, ::-1] st.image(reversed_image, caption="Input Image") evaluate(reversed_image)