import gradio as gr import numpy as np import tensorflow as tf from PIL import Image from transformers import SegformerImageProcessor, TFSegformerForSemanticSegmentation import matplotlib.pyplot as plt from matplotlib import gridspec # Load model and feature extractor feature_extractor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-1024-1024") model = TFSegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-1024-1024") # Load labels labels_list = [] with open(r'labels.txt', 'r') as fp: for line in fp: labels_list.append(line[:-1]) # ADE20K palette def ade_palette(): return [ [255, 0, 0], [255, 187, 0], [255, 228, 0], [29, 219, 22], [178, 204, 255], [1, 0, 255], [165, 102, 255], [217, 65, 197], [116, 116, 116], [204, 114, 61], [206, 242, 121], [61, 183, 204], [94, 94, 94], [196, 183, 59], [246, 246, 246], [209, 178, 255], [0, 87, 102], [153, 0, 76] ] labels_list = [] with open(r'labels.txt', 'r') as fp: for line in fp: labels_list.append(line[:-1]) colormap = np.asarray(ade_palette()) # Label to color image mapping def label_to_color_image(label): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("label value too large.") return colormap[label] # Draw segmentation plot def draw_plot(pred_img, seg): fig = plt.figure(figsize=(20, 15)) grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) plt.subplot(grid_spec[0]) plt.imshow(pred_img) plt.axis('off') LABEL_NAMES = np.asarray(labels_list) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) unique_labels = np.unique(seg.numpy().astype("uint8")) ax = plt.subplot(grid_spec[1]) plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0, labelsize=25) return fig # Sepia function def sepia(input_img): input_img = Image.fromarray(input_img) inputs = feature_extractor(images=input_img, return_tensors="tf") outputs = model(**inputs) logits = outputs.logits logits = tf.transpose(logits, [0, 2, 3, 1]) logits = tf.image.resize( logits, input_img.size[::-1] ) seg = tf.math.argmax(logits, axis=-1)[0] color_seg = np.zeros( (seg.shape[0], seg.shape[1], 3), dtype=np.uint8 ) for label, color in enumerate(colormap): color_seg[seg.numpy() == label, :] = color pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 pred_img = pred_img.astype(np.uint8) fig = draw_plot(pred_img, seg) return fig # Gradio Interface demo = gr.Interface(fn=sepia, inputs=gr.Image(shape=(800, 1200)), outputs=['plot'], examples=["citiscape-1.jpeg", "citiscape-2.jpeg"], allow_flagging='never') # Launch the interface demo.launch()