import gradio as gr import numpy as np import tensorflow as tf from PIL import Image from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation import matplotlib.pyplot as plt from matplotlib import gridspec feature_extractor = SegformerFeatureExtractor.from_pretrained( "nvidia/segformer-b0-finetuned-cityscapes-1024-1024" ) model = TFSegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b0-finetuned-cityscapes-1024-1024" ) def ade_palette(): """ADE20K palette that maps each class to RGB values.""" return [ [255, 0, 0], [255, 187, 0], [255, 228, 0], [29, 219, 22], [178, 204, 255], [1, 0, 255], [165, 102, 255], [217, 65, 197], [116, 116, 116], [204, 114, 61], [206, 242, 121], [61, 183, 204], [94, 94, 94], [196, 183, 59], [246, 246, 246], [209, 178, 255], [0, 87, 102], [153, 0, 76], [47, 157, 39] ] labels_list = [] with open(r'labels.txt', 'r') as fp: for line in fp: labels_list.append(line[:-1]) colormap = np.asarray(ade_palette()) def label_to_color_image(label): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("label value too large.") return colormap[label] def draw_plot(pred_img, seg): fig = plt.figure(figsize=(20, 15)) grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) plt.subplot(grid_spec[0]) plt.imshow(pred_img) plt.axis('off') LABEL_NAMES = np.asarray(labels_list) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) unique_labels = np.unique(seg.numpy().astype("uint8")) ax = plt.subplot(grid_spec[1]) plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0, labelsize=25) return fig def sepia(input_img): input_img = Image.fromarray(input_img) inputs = feature_extractor(images=input_img, return_tensors="tf") outputs = model(**inputs) logits = outputs.logits logits = tf.transpose(logits, [0, 2, 3, 1]) logits = tf.image.resize(logits, input_img.size[::-1]) seg = tf.math.argmax(logits, axis=-1)[0] color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) for label, color in enumerate(colormap): color_seg[seg.numpy() == label, :] = color pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 pred_img = pred_img.astype(np.uint8) fig = draw_plot(pred_img, seg) # 각 물체에 대한 예측 클래스와 확률 얻기 unique_labels = np.unique(seg.numpy().astype("uint8")) class_probabilities = {} for label in unique_labels: mask = (seg.numpy() == label) class_name = labels_list[label] class_prob = tf.nn.softmax(logits.numpy()[0][:, :, label]) # softmax 적용 class_prob = np.mean(class_prob[mask]) class_probabilities[class_name] = class_prob * 100 # 백분율로 변환 # Gradio Interface에 출력할 문자열 생성 output_text = "Predicted class probabilities:\n" for class_name, prob in class_probabilities.items(): output_text += f"{class_name}: {prob:.2f}%\n" # 정확성이 가장 높은 물체 정보 출력 max_prob_class = max(class_probabilities, key=class_probabilities.get) max_prob_value = class_probabilities[max_prob_class] output_text += f"\nPredicted class with highest probability: {max_prob_class} \n Probability: {max_prob_value:.4f}%" return fig, output_text demo = gr.Interface(fn=sepia, inputs=gr.Image(shape=(400, 600)), outputs=['plot', 'text'], examples=["citiscapes-1.jpeg", "citiscapes-2.jpeg", "citiscapes-3.jpeg", "citiscapes-4.jpeg"], allow_flagging='never') demo.launch()