import logging import random import torch from torch.cuda.amp import autocast as autocast import torch.nn as nn from video_llama.common.registry import registry from video_llama.models.blip2 import Blip2Base, disabled_train from video_llama.models.modeling_llama import LlamaForCausalLM # from video_llama.models.Qformer import BertEncoder from transformers import LlamaTokenizer,BertConfig # from transformers.models.bert.modeling_bert import BertEncoder import einops import copy import os from video_llama.models.Qformer import BertConfig, BertLMHeadModel # from flamingo_pytorch import PerceiverResampler @registry.register_model("video_llama") class VideoLLAMA(Blip2Base): """ BLIP2 GPT-LLAMA model. """ PRETRAINED_MODEL_CONFIG_DICT = { "pretrain_vicuna": "configs/models/video_llama.yaml", } @classmethod def init_video_Qformer(cls, num_query_token, vision_width,num_hidden_layers =2): encoder_config = BertConfig.from_pretrained("bert-base-uncased") encoder_config.num_hidden_layers = num_hidden_layers encoder_config.encoder_width = vision_width # insert cross-attention layer every other block encoder_config.add_cross_attention = True encoder_config.cross_attention_freq = 1 encoder_config.query_length = num_query_token Qformer = BertLMHeadModel(config=encoder_config) query_tokens = nn.Parameter( torch.zeros(1, num_query_token, encoder_config.hidden_size) ) query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) return Qformer, query_tokens def __init__( self, vit_model="eva_clip_g", q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth", img_size=224, drop_path_rate=0, use_grad_checkpoint=False, vit_precision="fp16", freeze_vit=True, freeze_qformer=True, num_query_token=32, llama_model="", prompt_path="", prompt_template="", max_txt_len=32, end_sym='\n', low_resource=False, # use 8 bit and put vit in cpu device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore. frozen_llama_proj=True, llama_proj_model='', fusion_header_type= "seqTransf", max_frame_pos= 32, fusion_head_layers = 2, num_video_query_token = 32, ): super().__init__() self.tokenizer = self.init_tokenizer() self.low_resource = low_resource print('Loading VIT') self.visual_encoder, self.ln_vision = self.init_vision_encoder( vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision ) if freeze_vit: for name, param in self.visual_encoder.named_parameters(): param.requires_grad = False self.visual_encoder = self.visual_encoder.eval() self.visual_encoder.train = disabled_train for name, param in self.ln_vision.named_parameters(): param.requires_grad = False self.ln_vision = self.ln_vision.eval() self.ln_vision.train = disabled_train logging.info("freeze vision encoder") print('Loading VIT Done') print('Loading Q-Former') self.Qformer, self.query_tokens = self.init_Qformer( num_query_token, self.visual_encoder.num_features ) self.Qformer.cls = None self.Qformer.bert.embeddings.word_embeddings = None self.Qformer.bert.embeddings.position_embeddings = None for layer in self.Qformer.bert.encoder.layer: layer.output = None layer.intermediate = None self.load_from_pretrained(url_or_filename=q_former_model) if freeze_qformer: for name, param in self.Qformer.named_parameters(): param.requires_grad = False self.Qformer = self.Qformer.eval() self.Qformer.train = disabled_train self.query_tokens.requires_grad = False logging.info("freeze Qformer") logging.info('Loading Q-Former Done') logging.info('Loading LLAMA Tokenizer') self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False, use_auth_token=os.environ["API_TOKEN"]) if self.llama_tokenizer.pad_token is None: self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token DEFAULT_IMAGE_PATCH_TOKEN = '' self.llama_tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.IMAGE_PATCH_TOKEN_ID = self.llama_tokenizer.get_vocab()[DEFAULT_IMAGE_PATCH_TOKEN] logging.info('Loading LLAMA Model') if self.low_resource: self.llama_model = LlamaForCausalLM.from_pretrained( llama_model, torch_dtype=torch.float16, load_in_8bit=True, device_map={'': device_8bit}, use_auth_token=os.environ["API_TOKEN"] ) else: self.llama_model = LlamaForCausalLM.from_pretrained( llama_model, torch_dtype=torch.float16,use_auth_token=os.environ["API_TOKEN"] ) for name, param in self.llama_model.named_parameters(): param.requires_grad = False logging.info('Loading LLAMA Done') logging.info('Loading LLAMA proj') self.llama_proj = nn.Linear( self.Qformer.config.hidden_size, self.llama_model.config.hidden_size ) if llama_proj_model: print("load llama proj weight: {}".format(llama_proj_model)) llama_proj_weight = torch.load(llama_proj_model, map_location="cpu") msg = model.load_state_dict(llama_proj_weight['model'], strict=False) if frozen_llama_proj: # todo frozen llama_proj for name, param in self.llama_proj.named_parameters(): param.requires_grad = False logging.info('LLAMA proj is frozen') else: for name, param in self.llama_proj.named_parameters(): param.requires_grad = True logging.info('LLAMA proj is not frozen') logging.info('Loading llama_proj Done') self.max_txt_len = max_txt_len self.end_sym = end_sym if prompt_path: with open(prompt_path, 'r') as f: raw_prompts = f.read().splitlines() filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "" in raw_prompt] self.prompt_list = [prompt_template.format(p) for p in filted_prompts] print('Load {} training prompts'.format(len(self.prompt_list))) print('Prompt Example \n{}'.format(random.choice(self.prompt_list))) else: self.prompt_list = [] self.video_frame_position_embedding = nn.Embedding(max_frame_pos, self.Qformer.config.hidden_size) self.num_video_query_token = num_video_query_token self.video_Qformer,self.video_query_tokens = self.init_video_Qformer(num_query_token = num_video_query_token,\ vision_width=self.Qformer.config.hidden_size, num_hidden_layers =2) self.video_Qformer.cls = None self.video_Qformer.bert.embeddings.word_embeddings = None self.video_Qformer.bert.embeddings.position_embeddings = None for layer in self.video_Qformer.bert.encoder.layer: layer.output = None layer.intermediate = None def vit_to_cpu(self): self.ln_vision.to("cpu") self.ln_vision.float() self.visual_encoder.to("cpu") self.visual_encoder.float() def encode_img(self, image): device = image.device # if self.low_resource: # self.vit_to_cpu() # image = image.to("cpu") # input shape b,c,t,h,w batch_size,_,time_length,_,_ = image.size() image = einops.rearrange(image, 'b c t h w -> (b t) c h w') with self.maybe_autocast(): # embed image features with blip2, out: (b t) q h image_embeds = self.ln_vision(self.visual_encoder(image)).to(device) image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device) query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) query_output = self.Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) # add frame_pos embedding position_ids = torch.arange(time_length, dtype=torch.long, device=query_tokens.device) position_ids = position_ids.unsqueeze(0).expand(batch_size, -1) frame_position_embeddings = self.video_frame_position_embedding(position_ids) q_hidden_state = query_output.last_hidden_state frame_position_embeddings = frame_position_embeddings.unsqueeze(-2) frame_hidden_state = einops.rearrange(q_hidden_state, '(b t) q h -> b t q h',b=batch_size,t=time_length) frame_hidden_state = frame_position_embeddings + frame_hidden_state # frame attention frame_hidden_state = einops.rearrange(frame_hidden_state, 'b t q h -> b (t q) h',b=batch_size,t=time_length) frame_atts = torch.ones(frame_hidden_state.size()[:-1], dtype=torch.long).to(device) video_query_tokens = self.video_query_tokens.expand(frame_hidden_state.shape[0], -1, -1) # print('attention') # print(video_query_tokens.size()) # print(frame_hidden_state.size()) video_query_output = self.video_Qformer.bert( query_embeds=video_query_tokens, encoder_hidden_states=frame_hidden_state, encoder_attention_mask=frame_atts, return_dict=True, ) video_hidden = video_query_output.last_hidden_state inputs_llama = self.llama_proj(video_hidden) atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image_embeds.device) return inputs_llama, atts_llama def prompt_wrap(self, img_embeds, atts_img, prompt): if prompt: batch_size = img_embeds.shape[0] # print(prompt) p_before, p_after = prompt.split('') p_before_tokens = self.llama_tokenizer( p_before, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) p_after_tokens = self.llama_tokenizer( p_after, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1) wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds, p_after_embeds], dim=1) wrapped_atts_img = atts_img[:, :1].expand(-1, wrapped_img_embeds.shape[1]) return wrapped_img_embeds, wrapped_atts_img else: return img_embeds, atts_img def forward(self, samples): if 'conv_type' in samples.keys() and samples['conv_type']=='multi': num_patch_tokens = self.num_video_query_token im_patch_token_id = self.IMAGE_PATCH_TOKEN_ID image = samples["images"] input_ids = samples['input_ids'] if len(image.size())==4: time = 1 image = einops.repeat(image, 'b c h w -> b c t h w',t = time) img_embeds, atts_img = self.encode_img(image) temp_input_ids = copy.deepcopy(input_ids) temp_input_ids[temp_input_ids == im_patch_token_id] = 0 temp_input_embedding = self.llama_model.model.embed_tokens(temp_input_ids) new_input_embeds=[] cur_image_idx = 0 for cur_input_ids, cur_input_embeds in zip(input_ids, temp_input_embedding): cur_image_features = img_embeds[cur_image_idx] if (cur_input_ids == im_patch_token_id).sum() != num_patch_tokens: raise ValueError("The number of image patch tokens should be the same as the number of image patches.") masked_indices = torch.where(cur_input_ids == im_patch_token_id)[0] mask_index_start = masked_indices[0] if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patch_tokens, device=masked_indices.device, dtype=masked_indices.dtype)).any(): raise ValueError("The image patch tokens should be consecutive.") cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patch_tokens:]), dim=0) new_input_embeds.append(cur_new_input_embeds) cur_image_idx+=1 inputs_embeds = torch.stack(new_input_embeds, dim=0) targets = samples['labels'] attention_mask = samples['attention_mask'] with self.maybe_autocast(): outputs = self.llama_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, return_dict=True, labels=targets, ) loss = outputs.loss return {"loss": loss} else: image = samples["image"] if len(image.size()) != 5: time = 1 image = einops.repeat(image, 'b c h w -> b c t h w',t = time) img_embeds, atts_img = self.encode_img(image) if self.prompt_list: prompt = random.choice(self.prompt_list) img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, prompt) self.llama_tokenizer.padding_side = "right" text = [t + self.end_sym for t in samples["text_input"]] to_regress_tokens = self.llama_tokenizer( text, return_tensors="pt", padding="longest", truncation=True, max_length=self.max_txt_len, add_special_tokens=False ).to(image.device) targets = to_regress_tokens.input_ids.masked_fill( to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100 ) empty_targets = ( torch.ones([atts_img.shape[0], atts_img.shape[1]+1], dtype=torch.long).to(image.device).fill_(-100) # plus one for bos ) targets = torch.cat([empty_targets, targets], dim=1) batch_size = img_embeds.shape[0] bos = torch.ones([batch_size, 1], dtype=to_regress_tokens.input_ids.dtype, device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id bos_embeds = self.llama_model.model.embed_tokens(bos) atts_bos = atts_img[:, :1] to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids) inputs_embeds = torch.cat([bos_embeds, img_embeds, to_regress_embeds], dim=1) attention_mask = torch.cat([atts_bos, atts_img, to_regress_tokens.attention_mask], dim=1) with self.maybe_autocast(): outputs = self.llama_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, return_dict=True, labels=targets, ) loss = outputs.loss return {"loss": loss} @classmethod def from_config(cls, cfg): vit_model = cfg.get("vit_model", "eva_clip_g") q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth") img_size = cfg.get("image_size") num_query_token = cfg.get("num_query_token") llama_model = cfg.get("llama_model") drop_path_rate = cfg.get("drop_path_rate", 0) use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) vit_precision = cfg.get("vit_precision", "fp16") freeze_vit = cfg.get("freeze_vit", True) freeze_qformer = cfg.get("freeze_qformer", True) low_resource = cfg.get("low_resource", False) device_8bit = cfg.get("device_8bit", 0) prompt_path = cfg.get("prompt_path", "") prompt_template = cfg.get("prompt_template", "") max_txt_len = cfg.get("max_txt_len", 32) end_sym = cfg.get("end_sym", '\n') frozen_llama_proj = cfg.get("frozen_llama_proj", True) llama_proj_model = cfg.get("llama_proj_model", '') fusion_header_type = cfg.get("fusion_header_type", 'seqTransf') max_frame_pos = cfg.get("max_frame_pos", 32) fusion_head_layers = cfg.get("fusion_head_layers", 2) num_video_query_token = cfg.get("num_video_query_token", 32) model = cls( vit_model=vit_model, q_former_model=q_former_model, img_size=img_size, drop_path_rate=drop_path_rate, use_grad_checkpoint=use_grad_checkpoint, vit_precision=vit_precision, freeze_vit=freeze_vit, freeze_qformer=freeze_qformer, num_query_token=num_query_token, llama_model=llama_model, prompt_path=prompt_path, prompt_template=prompt_template, max_txt_len=max_txt_len, end_sym=end_sym, low_resource=low_resource, device_8bit=device_8bit, fusion_header_type=fusion_header_type, max_frame_pos=max_frame_pos, fusion_head_layers=fusion_head_layers, frozen_llama_proj=frozen_llama_proj, num_video_query_token=num_video_query_token ) ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4 if ckpt_path: print("Load BLIP2-LLM Checkpoint: {}".format(ckpt_path)) ckpt = torch.load(ckpt_path, map_location="cpu") msg = model.load_state_dict(ckpt['model'], strict=False) return model