"""
ACE-Step: A Step Towards Music Generation Foundation Model
https://github.com/ace-step/ACE-Step
Apache 2.0 License
"""
import gradio as gr
import librosa
import os
TAG_DEFAULT = "funk, pop, soul, rock, melodic, guitar, drums, bass, keyboard, percussion, 105 BPM, energetic, upbeat, groovy, vibrant, dynamic"
LYRIC_DEFAULT = """[verse]
Neon lights they flicker bright
City hums in dead of night
Rhythms pulse through concrete veins
Lost in echoes of refrains
[verse]
Bassline groovin' in my chest
Heartbeats match the city's zest
Electric whispers fill the air
Synthesized dreams everywhere
[chorus]
Turn it up and let it flow
Feel the fire let it grow
In this rhythm we belong
Hear the night sing out our song
[verse]
Guitar strings they start to weep
Wake the soul from silent sleep
Every note a story told
In this night we’re bold and gold
[bridge]
Voices blend in harmony
Lost in pure cacophony
Timeless echoes timeless cries
Soulful shouts beneath the skies
[verse]
Keyboard dances on the keys
Melodies on evening breeze
Catch the tune and hold it tight
In this moment we take flight
"""
# First, let's define the presets at the top of the file, after the imports
GENRE_PRESETS = {
"Modern Pop": "pop, synth, drums, guitar, 120 bpm, upbeat, catchy, vibrant, female vocals, polished vocals",
"Rock": "rock, electric guitar, drums, bass, 130 bpm, energetic, rebellious, gritty, male vocals, raw vocals",
"Hip Hop": "hip hop, 808 bass, hi-hats, synth, 90 bpm, bold, urban, intense, male vocals, rhythmic vocals",
"Country": "country, acoustic guitar, steel guitar, fiddle, 100 bpm, heartfelt, rustic, warm, male vocals, twangy vocals",
"EDM": "edm, synth, bass, kick drum, 128 bpm, euphoric, pulsating, energetic, instrumental",
"Reggae": "reggae, guitar, bass, drums, 80 bpm, chill, soulful, positive, male vocals, smooth vocals",
"Classical": "classical, orchestral, strings, piano, 60 bpm, elegant, emotive, timeless, instrumental",
"Jazz": "jazz, saxophone, piano, double bass, 110 bpm, smooth, improvisational, soulful, male vocals, crooning vocals",
"Metal": "metal, electric guitar, double kick drum, bass, 160 bpm, aggressive, intense, heavy, male vocals, screamed vocals",
"R&B": "r&b, synth, bass, drums, 85 bpm, sultry, groovy, romantic, female vocals, silky vocals"
}
# Add this function to handle preset selection
def update_tags_from_preset(preset_name):
if preset_name == "Custom":
return ""
return GENRE_PRESETS.get(preset_name, "")
def create_output_ui(task_name="Text2Music"):
# For many consumer-grade GPU devices, only one batch can be run
output_audio1 = gr.Audio(type="filepath", label=f"{task_name} Generated Audio 1")
# output_audio2 = gr.Audio(type="filepath", label="Generated Audio 2")
with gr.Accordion(f"{task_name} Parameters", open=False):
input_params_json = gr.JSON(label=f"{task_name} Parameters")
# outputs = [output_audio1, output_audio2]
outputs = [output_audio1]
return outputs, input_params_json
def dump_func(*args):
print(args)
return []
def create_text2music_ui(
gr,
text2music_process_func,
sample_data_func=None,
load_data_func=None,
):
with gr.Row():
with gr.Column():
with gr.Row(equal_height=True):
# add markdown, tags and lyrics examples are from ai music generation community
audio_duration = gr.Slider(
-1,
240.0,
step=0.00001,
value=-1,
label="Audio Duration",
interactive=True,
info="-1 means random duration (30 ~ 240).",
scale=9,
)
sample_bnt = gr.Button("Sample", variant="secondary", scale=1)
# audio2audio
with gr.Row(equal_height=True):
audio2audio_enable = gr.Checkbox(label="Enable Audio2Audio", value=False, info="Check to enable Audio-to-Audio generation using a reference audio.", elem_id="audio2audio_checkbox")
lora_name_or_path = gr.Dropdown(
label="Lora Name or Path",
choices=["ACE-Step/ACE-Step-v1-chinese-rap-LoRA", "none"],
value="none",
allow_custom_value=True,
)
ref_audio_input = gr.Audio(type="filepath", label="Reference Audio (for Audio2Audio)", visible=False, elem_id="ref_audio_input", show_download_button=True)
ref_audio_strength = gr.Slider(
label="Refer audio strength",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.5,
elem_id="ref_audio_strength",
visible=False,
interactive=True,
)
def toggle_ref_audio_visibility(is_checked):
return (
gr.update(visible=is_checked, elem_id="ref_audio_input"),
gr.update(visible=is_checked, elem_id="ref_audio_strength"),
)
audio2audio_enable.change(
fn=toggle_ref_audio_visibility,
inputs=[audio2audio_enable],
outputs=[ref_audio_input, ref_audio_strength],
)
with gr.Column(scale=2):
with gr.Group():
gr.Markdown("""
Support tags, descriptions, and scene. Use commas to separate different tags.
Tags and lyrics examples are from AI music generation community.""")
with gr.Row():
genre_preset = gr.Dropdown(
choices=["Custom"] + list(GENRE_PRESETS.keys()),
value="Custom",
label="Preset",
scale=1,
)
prompt = gr.Textbox(
lines=1,
label="Tags",
max_lines=4,
value=TAG_DEFAULT,
scale=9,
)
# Add the change event for the preset dropdown
genre_preset.change(
fn=update_tags_from_preset,
inputs=[genre_preset],
outputs=[prompt]
)
with gr.Group():
gr.Markdown("""Support lyric structure tags like [verse], [chorus], and [bridge] to separate different parts of the lyrics.
Use [instrumental] or [inst] to generate instrumental music. Not support genre structure tag in lyrics""")
lyrics = gr.Textbox(
lines=9,
label="Lyrics",
max_lines=13,
value=LYRIC_DEFAULT,
)
with gr.Accordion("Basic Settings", open=False):
infer_step = gr.Slider(
minimum=1,
maximum=200,
step=1,
value=60,
label="Infer Steps",
interactive=True,
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=30.0,
step=0.1,
value=15.0,
label="Guidance Scale",
interactive=True,
info="When guidance_scale_lyric > 1 and guidance_scale_text > 1, the guidance scale will not be applied.",
)
guidance_scale_text = gr.Slider(
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
label="Guidance Scale Text",
interactive=True,
info="Guidance scale for text condition. It can only apply to cfg. set guidance_scale_text=5.0, guidance_scale_lyric=1.5 for start",
)
guidance_scale_lyric = gr.Slider(
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
label="Guidance Scale Lyric",
interactive=True,
)
manual_seeds = gr.Textbox(
label="manual seeds (default None)",
placeholder="1,2,3,4",
value=None,
info="Seed for the generation",
)
with gr.Accordion("Advanced Settings", open=False):
scheduler_type = gr.Radio(
["euler", "heun"],
value="euler",
label="Scheduler Type",
elem_id="scheduler_type",
info="Scheduler type for the generation. euler is recommended. heun will take more time.",
)
cfg_type = gr.Radio(
["cfg", "apg", "cfg_star"],
value="apg",
label="CFG Type",
elem_id="cfg_type",
info="CFG type for the generation. apg is recommended. cfg and cfg_star are almost the same.",
)
use_erg_tag = gr.Checkbox(
label="use ERG for tag",
value=True,
info="Use Entropy Rectifying Guidance for tag. It will multiple a temperature to the attention to make a weaker tag condition and make better diversity.",
)
use_erg_lyric = gr.Checkbox(
label="use ERG for lyric",
value=False,
info="The same but apply to lyric encoder's attention.",
)
use_erg_diffusion = gr.Checkbox(
label="use ERG for diffusion",
value=True,
info="The same but apply to diffusion model's attention.",
)
omega_scale = gr.Slider(
minimum=-100.0,
maximum=100.0,
step=0.1,
value=10.0,
label="Granularity Scale",
interactive=True,
info="Granularity scale for the generation. Higher values can reduce artifacts",
)
guidance_interval = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.5,
label="Guidance Interval",
interactive=True,
info="Guidance interval for the generation. 0.5 means only apply guidance in the middle steps (0.25 * infer_steps to 0.75 * infer_steps)",
)
guidance_interval_decay = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.0,
label="Guidance Interval Decay",
interactive=True,
info="Guidance interval decay for the generation. Guidance scale will decay from guidance_scale to min_guidance_scale in the interval. 0.0 means no decay.",
)
min_guidance_scale = gr.Slider(
minimum=0.0,
maximum=200.0,
step=0.1,
value=3.0,
label="Min Guidance Scale",
interactive=True,
info="Min guidance scale for guidance interval decay's end scale",
)
oss_steps = gr.Textbox(
label="OSS Steps",
placeholder="16, 29, 52, 96, 129, 158, 172, 183, 189, 200",
value=None,
info="Optimal Steps for the generation. But not test well",
)
text2music_bnt = gr.Button("Generate", variant="primary")
with gr.Column():
outputs, input_params_json = create_output_ui()
with gr.Tab("retake"):
retake_variance = gr.Slider(
minimum=0.0, maximum=1.0, step=0.01, value=0.2, label="variance"
)
retake_seeds = gr.Textbox(
label="retake seeds (default None)", placeholder="", value=None
)
retake_bnt = gr.Button("Retake", variant="primary")
retake_outputs, retake_input_params_json = create_output_ui("Retake")
def retake_process_func(json_data, retake_variance, retake_seeds):
return text2music_process_func(
json_data["audio_duration"],
json_data["prompt"],
json_data["lyrics"],
json_data["infer_step"],
json_data["guidance_scale"],
json_data["scheduler_type"],
json_data["cfg_type"],
json_data["omega_scale"],
", ".join(map(str, json_data["actual_seeds"])),
json_data["guidance_interval"],
json_data["guidance_interval_decay"],
json_data["min_guidance_scale"],
json_data["use_erg_tag"],
json_data["use_erg_lyric"],
json_data["use_erg_diffusion"],
", ".join(map(str, json_data["oss_steps"])),
(
json_data["guidance_scale_text"]
if "guidance_scale_text" in json_data
else 0.0
),
(
json_data["guidance_scale_lyric"]
if "guidance_scale_lyric" in json_data
else 0.0
),
retake_seeds=retake_seeds,
retake_variance=retake_variance,
task="retake",
lora_name_or_path="none" if "lora_name_or_path" not in json_data else json_data["lora_name_or_path"]
)
retake_bnt.click(
fn=retake_process_func,
inputs=[
input_params_json,
retake_variance,
retake_seeds,
],
outputs=retake_outputs + [retake_input_params_json],
)
with gr.Tab("repainting"):
retake_variance = gr.Slider(
minimum=0.0, maximum=1.0, step=0.01, value=0.2, label="variance"
)
retake_seeds = gr.Textbox(
label="repaint seeds (default None)", placeholder="", value=None
)
repaint_start = gr.Slider(
minimum=0.0,
maximum=240.0,
step=0.01,
value=0.0,
label="Repaint Start Time",
interactive=True,
)
repaint_end = gr.Slider(
minimum=0.0,
maximum=240.0,
step=0.01,
value=30.0,
label="Repaint End Time",
interactive=True,
)
repaint_source = gr.Radio(
["text2music", "last_repaint", "upload"],
value="text2music",
label="Repaint Source",
elem_id="repaint_source",
)
repaint_source_audio_upload = gr.Audio(
label="Upload Audio",
type="filepath",
visible=False,
elem_id="repaint_source_audio_upload",
show_download_button=True,
)
repaint_source.change(
fn=lambda x: gr.update(
visible=x == "upload", elem_id="repaint_source_audio_upload"
),
inputs=[repaint_source],
outputs=[repaint_source_audio_upload],
)
repaint_bnt = gr.Button("Repaint", variant="primary")
repaint_outputs, repaint_input_params_json = create_output_ui("Repaint")
def repaint_process_func(
text2music_json_data,
repaint_json_data,
retake_variance,
retake_seeds,
repaint_start,
repaint_end,
repaint_source,
repaint_source_audio_upload,
prompt,
lyrics,
infer_step,
guidance_scale,
scheduler_type,
cfg_type,
omega_scale,
manual_seeds,
guidance_interval,
guidance_interval_decay,
min_guidance_scale,
use_erg_tag,
use_erg_lyric,
use_erg_diffusion,
oss_steps,
guidance_scale_text,
guidance_scale_lyric,
):
if repaint_source == "upload":
src_audio_path = repaint_source_audio_upload
audio_duration = librosa.get_duration(filename=src_audio_path)
json_data = {"audio_duration": audio_duration}
elif repaint_source == "text2music":
json_data = text2music_json_data
src_audio_path = json_data["audio_path"]
elif repaint_source == "last_repaint":
json_data = repaint_json_data
src_audio_path = json_data["audio_path"]
return text2music_process_func(
json_data["audio_duration"],
prompt,
lyrics,
infer_step,
guidance_scale,
scheduler_type,
cfg_type,
omega_scale,
manual_seeds,
guidance_interval,
guidance_interval_decay,
min_guidance_scale,
use_erg_tag,
use_erg_lyric,
use_erg_diffusion,
oss_steps,
guidance_scale_text,
guidance_scale_lyric,
retake_seeds=retake_seeds,
retake_variance=retake_variance,
task="repaint",
repaint_start=repaint_start,
repaint_end=repaint_end,
src_audio_path=src_audio_path,
lora_name_or_path="none" if "lora_name_or_path" not in json_data else json_data["lora_name_or_path"]
)
repaint_bnt.click(
fn=repaint_process_func,
inputs=[
input_params_json,
repaint_input_params_json,
retake_variance,
retake_seeds,
repaint_start,
repaint_end,
repaint_source,
repaint_source_audio_upload,
prompt,
lyrics,
infer_step,
guidance_scale,
scheduler_type,
cfg_type,
omega_scale,
manual_seeds,
guidance_interval,
guidance_interval_decay,
min_guidance_scale,
use_erg_tag,
use_erg_lyric,
use_erg_diffusion,
oss_steps,
guidance_scale_text,
guidance_scale_lyric,
],
outputs=repaint_outputs + [repaint_input_params_json],
)
with gr.Tab("edit"):
edit_prompt = gr.Textbox(lines=2, label="Edit Tags", max_lines=4)
edit_lyrics = gr.Textbox(lines=9, label="Edit Lyrics", max_lines=13)
retake_seeds = gr.Textbox(
label="edit seeds (default None)", placeholder="", value=None
)
edit_type = gr.Radio(
["only_lyrics", "remix"],
value="only_lyrics",
label="Edit Type",
elem_id="edit_type",
info="`only_lyrics` will keep the whole song the same except lyrics difference. Make your diffrence smaller, e.g. one lyrc line change.\nremix can change the song melody and genre",
)
edit_n_min = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.6,
label="edit_n_min",
interactive=True,
)
edit_n_max = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0,
label="edit_n_max",
interactive=True,
)
def edit_type_change_func(edit_type):
if edit_type == "only_lyrics":
n_min = 0.6
n_max = 1.0
elif edit_type == "remix":
n_min = 0.2
n_max = 0.4
return n_min, n_max
edit_type.change(
edit_type_change_func,
inputs=[edit_type],
outputs=[edit_n_min, edit_n_max],
)
edit_source = gr.Radio(
["text2music", "last_edit", "upload"],
value="text2music",
label="Edit Source",
elem_id="edit_source",
)
edit_source_audio_upload = gr.Audio(
label="Upload Audio",
type="filepath",
visible=False,
elem_id="edit_source_audio_upload",
show_download_button=True,
)
edit_source.change(
fn=lambda x: gr.update(
visible=x == "upload", elem_id="edit_source_audio_upload"
),
inputs=[edit_source],
outputs=[edit_source_audio_upload],
)
edit_bnt = gr.Button("Edit", variant="primary")
edit_outputs, edit_input_params_json = create_output_ui("Edit")
def edit_process_func(
text2music_json_data,
edit_input_params_json,
edit_source,
edit_source_audio_upload,
prompt,
lyrics,
edit_prompt,
edit_lyrics,
edit_n_min,
edit_n_max,
infer_step,
guidance_scale,
scheduler_type,
cfg_type,
omega_scale,
manual_seeds,
guidance_interval,
guidance_interval_decay,
min_guidance_scale,
use_erg_tag,
use_erg_lyric,
use_erg_diffusion,
oss_steps,
guidance_scale_text,
guidance_scale_lyric,
retake_seeds,
):
if edit_source == "upload":
src_audio_path = edit_source_audio_upload
audio_duration = librosa.get_duration(filename=src_audio_path)
json_data = {"audio_duration": audio_duration}
elif edit_source == "text2music":
json_data = text2music_json_data
src_audio_path = json_data["audio_path"]
elif edit_source == "last_edit":
json_data = edit_input_params_json
src_audio_path = json_data["audio_path"]
if not edit_prompt:
edit_prompt = prompt
if not edit_lyrics:
edit_lyrics = lyrics
return text2music_process_func(
json_data["audio_duration"],
prompt,
lyrics,
infer_step,
guidance_scale,
scheduler_type,
cfg_type,
omega_scale,
manual_seeds,
guidance_interval,
guidance_interval_decay,
min_guidance_scale,
use_erg_tag,
use_erg_lyric,
use_erg_diffusion,
oss_steps,
guidance_scale_text,
guidance_scale_lyric,
task="edit",
src_audio_path=src_audio_path,
edit_target_prompt=edit_prompt,
edit_target_lyrics=edit_lyrics,
edit_n_min=edit_n_min,
edit_n_max=edit_n_max,
retake_seeds=retake_seeds,
lora_name_or_path="none" if "lora_name_or_path" not in json_data else json_data["lora_name_or_path"]
)
edit_bnt.click(
fn=edit_process_func,
inputs=[
input_params_json,
edit_input_params_json,
edit_source,
edit_source_audio_upload,
prompt,
lyrics,
edit_prompt,
edit_lyrics,
edit_n_min,
edit_n_max,
infer_step,
guidance_scale,
scheduler_type,
cfg_type,
omega_scale,
manual_seeds,
guidance_interval,
guidance_interval_decay,
min_guidance_scale,
use_erg_tag,
use_erg_lyric,
use_erg_diffusion,
oss_steps,
guidance_scale_text,
guidance_scale_lyric,
retake_seeds,
],
outputs=edit_outputs + [edit_input_params_json],
)
with gr.Tab("extend"):
extend_seeds = gr.Textbox(
label="extend seeds (default None)", placeholder="", value=None
)
left_extend_length = gr.Slider(
minimum=0.0,
maximum=240.0,
step=0.01,
value=0.0,
label="Left Extend Length",
interactive=True,
)
right_extend_length = gr.Slider(
minimum=0.0,
maximum=240.0,
step=0.01,
value=30.0,
label="Right Extend Length",
interactive=True,
)
extend_source = gr.Radio(
["text2music", "last_extend", "upload"],
value="text2music",
label="Extend Source",
elem_id="extend_source",
)
extend_source_audio_upload = gr.Audio(
label="Upload Audio",
type="filepath",
visible=False,
elem_id="extend_source_audio_upload",
show_download_button=True,
)
extend_source.change(
fn=lambda x: gr.update(
visible=x == "upload", elem_id="extend_source_audio_upload"
),
inputs=[extend_source],
outputs=[extend_source_audio_upload],
)
extend_bnt = gr.Button("Extend", variant="primary")
extend_outputs, extend_input_params_json = create_output_ui("Extend")
def extend_process_func(
text2music_json_data,
extend_input_params_json,
extend_seeds,
left_extend_length,
right_extend_length,
extend_source,
extend_source_audio_upload,
prompt,
lyrics,
infer_step,
guidance_scale,
scheduler_type,
cfg_type,
omega_scale,
manual_seeds,
guidance_interval,
guidance_interval_decay,
min_guidance_scale,
use_erg_tag,
use_erg_lyric,
use_erg_diffusion,
oss_steps,
guidance_scale_text,
guidance_scale_lyric,
):
if extend_source == "upload":
src_audio_path = extend_source_audio_upload
# get audio duration
audio_duration = librosa.get_duration(filename=src_audio_path)
json_data = {"audio_duration": audio_duration}
elif extend_source == "text2music":
json_data = text2music_json_data
src_audio_path = json_data["audio_path"]
elif extend_source == "last_extend":
json_data = extend_input_params_json
src_audio_path = json_data["audio_path"]
repaint_start = -left_extend_length
repaint_end = json_data["audio_duration"] + right_extend_length
return text2music_process_func(
json_data["audio_duration"],
prompt,
lyrics,
infer_step,
guidance_scale,
scheduler_type,
cfg_type,
omega_scale,
manual_seeds,
guidance_interval,
guidance_interval_decay,
min_guidance_scale,
use_erg_tag,
use_erg_lyric,
use_erg_diffusion,
oss_steps,
guidance_scale_text,
guidance_scale_lyric,
retake_seeds=extend_seeds,
retake_variance=1.0,
task="extend",
repaint_start=repaint_start,
repaint_end=repaint_end,
src_audio_path=src_audio_path,
lora_name_or_path="none" if "lora_name_or_path" not in json_data else json_data["lora_name_or_path"]
)
extend_bnt.click(
fn=extend_process_func,
inputs=[
input_params_json,
extend_input_params_json,
extend_seeds,
left_extend_length,
right_extend_length,
extend_source,
extend_source_audio_upload,
prompt,
lyrics,
infer_step,
guidance_scale,
scheduler_type,
cfg_type,
omega_scale,
manual_seeds,
guidance_interval,
guidance_interval_decay,
min_guidance_scale,
use_erg_tag,
use_erg_lyric,
use_erg_diffusion,
oss_steps,
guidance_scale_text,
guidance_scale_lyric,
],
outputs=extend_outputs + [extend_input_params_json],
)
def json2output(json_data):
return (
json_data["audio_duration"],
json_data["prompt"],
json_data["lyrics"],
json_data["infer_step"],
json_data["guidance_scale"],
json_data["scheduler_type"],
json_data["cfg_type"],
json_data["omega_scale"],
", ".join(map(str, json_data["actual_seeds"])),
json_data["guidance_interval"],
json_data["guidance_interval_decay"],
json_data["min_guidance_scale"],
json_data["use_erg_tag"],
json_data["use_erg_lyric"],
json_data["use_erg_diffusion"],
", ".join(map(str, json_data["oss_steps"])),
(
json_data["guidance_scale_text"]
if "guidance_scale_text" in json_data
else 0.0
),
(
json_data["guidance_scale_lyric"]
if "guidance_scale_lyric" in json_data
else 0.0
),
(
json_data["audio2audio_enable"]
if "audio2audio_enable" in json_data
else False
),
(
json_data["ref_audio_strength"]
if "ref_audio_strength" in json_data
else 0.5
),
(
json_data["ref_audio_input"]
if "ref_audio_input" in json_data
else None
),
)
def sample_data(lora_name_or_path_):
json_data = sample_data_func(lora_name_or_path_)
return json2output(json_data)
sample_bnt.click(
sample_data,
inputs=[lora_name_or_path],
outputs=[
audio_duration,
prompt,
lyrics,
infer_step,
guidance_scale,
scheduler_type,
cfg_type,
omega_scale,
manual_seeds,
guidance_interval,
guidance_interval_decay,
min_guidance_scale,
use_erg_tag,
use_erg_lyric,
use_erg_diffusion,
oss_steps,
guidance_scale_text,
guidance_scale_lyric,
audio2audio_enable,
ref_audio_strength,
ref_audio_input,
],
)
text2music_bnt.click(
fn=text2music_process_func,
inputs=[
audio_duration,
prompt,
lyrics,
infer_step,
guidance_scale,
scheduler_type,
cfg_type,
omega_scale,
manual_seeds,
guidance_interval,
guidance_interval_decay,
min_guidance_scale,
use_erg_tag,
use_erg_lyric,
use_erg_diffusion,
oss_steps,
guidance_scale_text,
guidance_scale_lyric,
audio2audio_enable,
ref_audio_strength,
ref_audio_input,
lora_name_or_path,
],
outputs=outputs + [input_params_json],
)
def create_main_demo_ui(
text2music_process_func=dump_func,
sample_data_func=dump_func,
load_data_func=dump_func,
):
with gr.Blocks(
title="ACE-Step Model 1.0 DEMO",
) as demo:
gr.Markdown(
"""
ACE-Step: A Step Towards Music Generation Foundation Model
Project |
Checkpoints |
Discord
"""
)
with gr.Tab("text2music"):
create_text2music_ui(
gr=gr,
text2music_process_func=text2music_process_func,
sample_data_func=sample_data_func,
load_data_func=load_data_func,
)
return demo
if __name__ == "__main__":
demo = create_main_demo_ui()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
)