import gradio as gr import numpy as np import random # import spaces import torch from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast # from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype, vae=taef1).to(device) torch.cuda.empty_cache() MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) # @spaces.GPU(duration=75) def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil", good_vae=good_vae, ): yield img, seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [dev] 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.launch() # import torch # import gradio as gr # from diffusers.pipelines.flux.pipeline_flux import FluxPipeline # from diffusers.models.controlnet_flux import FluxControlNetModel # from controlnet_aux import CannyDetector # # dtype = torch.bfloat16 # device = "cuda" if torch.cuda.is_available() else "cpu" # # base_model = "black-forest-labs/FLUX.1-schnell" # controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes" # # controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype) # pipe = FluxPipeline.from_pretrained( # base_model, controlnet=controlnet, torch_dtype=dtype # ).to(device) # # pipe.enable_model_cpu_offload() # # pipe.to("cuda") # # canny = CannyDetector() # # # def inpaint( # image, # mask, # prompt, # strength, # num_inference_steps, # guidance_scale, # controlnet_conditioning_scale, # ): # canny_image = canny(image) # # image_res = pipe( # prompt, # image=image, # control_image=canny_image, # controlnet_conditioning_scale=controlnet_conditioning_scale, # mask_image=mask, # strength=strength, # num_inference_steps=num_inference_steps, # guidance_scale=guidance_scale, # ).images[0] # # return image_res # # # iface = gr.Interface( # fn=inpaint, # inputs=[ # gr.Image(type="pil", label="Input Image"), # gr.Image(type="pil", label="Mask Image"), # gr.Textbox(label="Prompt"), # gr.Slider(0, 1, value=0.95, label="Strength"), # gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps"), # gr.Slider(0, 20, value=5, label="Guidance Scale"), # gr.Slider(0, 1, value=0.5, label="ControlNet Conditioning Scale"), # ], # outputs=gr.Image(type="pil", label="Output Image"), # title="Flux Inpaint AI Model", # description="Upload an image and a mask, then provide a prompt to generate an inpainted image.", # ) # # iface.launch()