import gradio as gr import numpy as np import requests import hopsworks import joblib project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("titanic_modal", version=5) model_dir = model.download() model = joblib.load(model_dir + "/titanic_model.pkl") def titanic(age, sex, pclass, fare): input_list = [] input_list.append(age) input_list.append(sex) input_list.append(pclass) input_list.append(fare) # 'res' is a list of predictions returned as the label. res = model.predict(np.asarray(input_list).reshape(1, -1)) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. if res == 0: output = "This individual probably survived the Titanic." else: output = "This individual unfortunately probably did not survive the Titanic." return output demo = gr.Interface( fn=titanic, title="Titanic survivor analytics", description="Experiment with personal data to predict whether a person would survive the Titanic", allow_flagging="never", inputs=[ gr.inputs.Number(default=30.0, label=" Age "), gr.inputs.Number(default=1, label=" Sex (0 = Female, 1 = Male) "), gr.inputs.Number(default=2, label=" Ticket class (1 = first, 2 = second, 3 = third) "), gr.inputs.Number(default=1.0, label=" Passenger fare (Positive real number)"), ], outputs=gr.outputs.Textbox(label='Prediction')) demo.launch()