import functools import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils import spectral_norm ### single layers def conv2d(*args, **kwargs): return spectral_norm(nn.Conv2d(*args, **kwargs)) def convTranspose2d(*args, **kwargs): return spectral_norm(nn.ConvTranspose2d(*args, **kwargs)) def embedding(*args, **kwargs): return spectral_norm(nn.Embedding(*args, **kwargs)) def linear(*args, **kwargs): return spectral_norm(nn.Linear(*args, **kwargs)) def NormLayer(c, mode='batch'): if mode == 'group': return nn.GroupNorm(c//2, c) elif mode == 'batch': return nn.BatchNorm2d(c) ### Activations class GLU(nn.Module): def forward(self, x): nc = x.size(1) assert nc % 2 == 0, 'channels dont divide 2!' nc = int(nc/2) return x[:, :nc] * torch.sigmoid(x[:, nc:]) class Swish(nn.Module): def forward(self, feat): return feat * torch.sigmoid(feat) ### Upblocks class InitLayer(nn.Module): def __init__(self, nz, channel, sz=4): super().__init__() self.init = nn.Sequential( convTranspose2d(nz, channel*2, sz, 1, 0, bias=False), NormLayer(channel*2), GLU(), ) def forward(self, noise): noise = noise.view(noise.shape[0], -1, 1, 1) return self.init(noise) def UpBlockSmall(in_planes, out_planes): block = nn.Sequential( nn.Upsample(scale_factor=2, mode='nearest'), conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False), NormLayer(out_planes*2), GLU()) return block class UpBlockSmallCond(nn.Module): def __init__(self, in_planes, out_planes, z_dim): super().__init__() self.in_planes = in_planes self.out_planes = out_planes self.up = nn.Upsample(scale_factor=2, mode='nearest') self.conv = conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False) which_bn = functools.partial(CCBN, which_linear=linear, input_size=z_dim) self.bn = which_bn(2*out_planes) self.act = GLU() def forward(self, x, c): x = self.up(x) x = self.conv(x) x = self.bn(x, c) x = self.act(x) return x def UpBlockBig(in_planes, out_planes): block = nn.Sequential( nn.Upsample(scale_factor=2, mode='nearest'), conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False), NoiseInjection(), NormLayer(out_planes*2), GLU(), conv2d(out_planes, out_planes*2, 3, 1, 1, bias=False), NoiseInjection(), NormLayer(out_planes*2), GLU() ) return block class UpBlockBigCond(nn.Module): def __init__(self, in_planes, out_planes, z_dim): super().__init__() self.in_planes = in_planes self.out_planes = out_planes self.up = nn.Upsample(scale_factor=2, mode='nearest') self.conv1 = conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False) self.conv2 = conv2d(out_planes, out_planes*2, 3, 1, 1, bias=False) which_bn = functools.partial(CCBN, which_linear=linear, input_size=z_dim) self.bn1 = which_bn(2*out_planes) self.bn2 = which_bn(2*out_planes) self.act = GLU() self.noise = NoiseInjection() def forward(self, x, c): # block 1 x = self.up(x) x = self.conv1(x) x = self.noise(x) x = self.bn1(x, c) x = self.act(x) # block 2 x = self.conv2(x) x = self.noise(x) x = self.bn2(x, c) x = self.act(x) return x class SEBlock(nn.Module): def __init__(self, ch_in, ch_out): super().__init__() self.main = nn.Sequential( nn.AdaptiveAvgPool2d(4), conv2d(ch_in, ch_out, 4, 1, 0, bias=False), Swish(), conv2d(ch_out, ch_out, 1, 1, 0, bias=False), nn.Sigmoid(), ) def forward(self, feat_small, feat_big): return feat_big * self.main(feat_small) ### Downblocks class SeparableConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, bias=False): super(SeparableConv2d, self).__init__() self.depthwise = conv2d(in_channels, in_channels, kernel_size=kernel_size, groups=in_channels, bias=bias, padding=1) self.pointwise = conv2d(in_channels, out_channels, kernel_size=1, bias=bias) def forward(self, x): out = self.depthwise(x) out = self.pointwise(out) return out class DownBlock(nn.Module): def __init__(self, in_planes, out_planes, separable=False): super().__init__() if not separable: self.main = nn.Sequential( conv2d(in_planes, out_planes, 4, 2, 1), NormLayer(out_planes), nn.LeakyReLU(0.2, inplace=True), ) else: self.main = nn.Sequential( SeparableConv2d(in_planes, out_planes, 3), NormLayer(out_planes), nn.LeakyReLU(0.2, inplace=True), nn.AvgPool2d(2, 2), ) def forward(self, feat): return self.main(feat) class DownBlockPatch(nn.Module): def __init__(self, in_planes, out_planes, separable=False): super().__init__() self.main = nn.Sequential( DownBlock(in_planes, out_planes, separable), conv2d(out_planes, out_planes, 1, 1, 0, bias=False), NormLayer(out_planes), nn.LeakyReLU(0.2, inplace=True), ) def forward(self, feat): return self.main(feat) ### CSM class ResidualConvUnit(nn.Module): def __init__(self, cin, activation, bn): super().__init__() self.conv = nn.Conv2d(cin, cin, kernel_size=3, stride=1, padding=1, bias=True) self.skip_add = nn.quantized.FloatFunctional() def forward(self, x): return self.skip_add.add(self.conv(x), x) class FeatureFusionBlock(nn.Module): def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, lowest=False): super().__init__() self.deconv = deconv self.align_corners = align_corners self.expand = expand out_features = features if self.expand==True: out_features = features//2 self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) self.skip_add = nn.quantized.FloatFunctional() def forward(self, *xs): output = xs[0] if len(xs) == 2: output = self.skip_add.add(output, xs[1]) output = nn.functional.interpolate( output, scale_factor=2, mode="bilinear", align_corners=self.align_corners ) output = self.out_conv(output) return output ### Misc class NoiseInjection(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.zeros(1), requires_grad=True) def forward(self, feat, noise=None): if noise is None: batch, _, height, width = feat.shape noise = torch.randn(batch, 1, height, width).to(feat.device) return feat + self.weight * noise class CCBN(nn.Module): ''' conditional batchnorm ''' def __init__(self, output_size, input_size, which_linear, eps=1e-5, momentum=0.1): super().__init__() self.output_size, self.input_size = output_size, input_size # Prepare gain and bias layers self.gain = which_linear(input_size, output_size) self.bias = which_linear(input_size, output_size) # epsilon to avoid dividing by 0 self.eps = eps # Momentum self.momentum = momentum self.register_buffer('stored_mean', torch.zeros(output_size)) self.register_buffer('stored_var', torch.ones(output_size)) def forward(self, x, y): # Calculate class-conditional gains and biases gain = (1 + self.gain(y)).view(y.size(0), -1, 1, 1) bias = self.bias(y).view(y.size(0), -1, 1, 1) out = F.batch_norm(x, self.stored_mean, self.stored_var, None, None, self.training, 0.1, self.eps) return out * gain + bias class Interpolate(nn.Module): """Interpolation module.""" def __init__(self, size, mode='bilinear', align_corners=False): """Init. Args: scale_factor (float): scaling mode (str): interpolation mode """ super(Interpolate, self).__init__() self.interp = nn.functional.interpolate self.size = size self.mode = mode self.align_corners = align_corners def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: interpolated data """ x = self.interp( x, size=self.size, mode=self.mode, align_corners=self.align_corners, ) return x