import streamlit as st from streamlit.elements.altair import generate_chart from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import pipeline st.title("Loading model") model_ckpt = "flax-community/gpt2-rap-lyric-generator" tokenizer = AutoTokenizer.from_pretrained(model_ckpt,from_flax=True) model = AutoModelForCausalLM.from_pretrained(model_ckpt,from_flax=True) text_generation = pipeline("text-generation", model=model, tokenizer=tokenizer) st.title("Rap lyrics generator") artist = st.text_input("Enter the artist", "Eminem") song_name = st.text_input("Enter the desired song name", "Gas is going") if st.button("Generate lyrics"): st.title(f"{artist}: {song_name}") prefix_text = f"{song_name} [Verse 1:{artist}]" generated_song = text_generation(prefix_text, max_length=500, do_sample=True)[0] for count, line in enumerate(generated_song['generated_text'].split("\ ")): if count == 0: st.write(line[line.find('['):]) continue if"" in line: break if "" in line: st.write(line[5:]) continue st.write(line)